Abstract
A one-pot three-component Biginelli-like reaction of enaminones, aldehydes with urea/thiourea in the presence of 2-pyrrolidonium bisulphate as an acidic ionic liquid catalyst for the preparation of 6-unsubstituted dihydropyrimidinones is described. The excellent yield, short reaction time, simple procedure and avoidance of the use of organic solvents are some advantages of this method.
Acknowledgements
The authors wish to acknowledge the financial support received from the University of Mazandaran Research Council.
References
Al-Mousawi, S. M., El-Apasery, M. A., & Elnagdi, M. H. (2010). Enaminones in heterocyclic synthesis: A novel route to tetrahydropyrimidines, dihydropyridines, triacylbenzenes and naphthofurans under microwave irradiation. Molecules, 15, 58–67. DOI: 10.3390/molecules15010058.10.3390/molecules15010058Search in Google Scholar
Antonietti, M., Kuang, D. B., Smarsly, B., & Zhou, Y. (2004). Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. Angewandte Chemie International Edition, 43, 4988–4992. DOI: 10.1002/anie.200460091.10.1002/anie.200460091Search in Google Scholar
Atwal, K. S., Swanson, B. N., Unger, S. E., Floyd, D. M., Moreland, S., Hedberg, A., & O’Reilly, B. C. (1991). Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. Journal of Medicinal Chemistry, 34, 806–811. DOI: 10.1021/jm00106a048.10.1021/jm00106a048Search in Google Scholar
Bailey, C. D., Houlden, C. E., Bar, G. L. J., Lloyd-Jones, G. C., & Booker-Milburn, K. I. (2007). A chemo- and regio-selective three-component dihydropyrimidinone synthesis. Chemical Communications, 2007, 2932–2934. DOI: 10.1039/b707361e.10.1039/b707361eSearch in Google Scholar
Dallinger, D., & Kappe, C. O. (2005). Creating chemical diversity space by scaffold decoration of dihydropyrimidines. Pure and Applied Chemistry, 77, 155–161. DOI:10.1351/pac200577010155.10.1351/pac200577010155Search in Google Scholar
Darwish, E. S., Abdelhamid, I. A., Nasra, M. A., Abdel-Gallil, F. M., & Fleita, D. H. (2010). A one-pot Biginelli synthesis of 6-unsubstituted 5-aroylpyrimidin-2(1H)-ones and 6- acetyl-1,2,4-triazin-3(2H)-ones. Helvetica Chimica Acta, 93, 1204–1208. DOI: 10.1002/hlca.200900355.10.1002/hlca.200900355Search in Google Scholar
Gordon, C. M. (2001). New developments in catalysis using ionic liquids. Applied Catalysis A, 222, 101–117. DOI: 10.1016/s0926-860x(01)00834-1.10.1016/s0926-860x(01)00834-1Search in Google Scholar
Hagiwara, R., & Ito, Y. (2000). Room temperature ionic liquids of alkylimidazolium cations and fluoroanions. Journal of Fluorine Chemistry, 105, 221–227. DOI: 10.1016/s0022-1139(99)00267-5.10.1016/s0022-1139(99)00267-5Search in Google Scholar
Hajipour, A. R., Rajaei, A., & Ruoho, A. E. (2009). Mild and efficient method for preparation of azides from alcohols using acidic ionic liquid [H-NMP]HSO4. Tetrahedron Letters, 50, 708–711. DOI: 10.1016/j.tetlet.2008.11.111.10.1016/j.tetlet.2008.11.111Search in Google Scholar
Hassaneen, H. M. E., & Abdelhamid, I. A. (2013). Onepot synthesis of 5-unsubstituted-6-aroyl-[1,2,4]triazolo[1,5-a]pyrimidine utilizing Biginelli-like multicomponent reaction of enaminones with 3-amino-1,2,4-triazole as the urea component. Current Organic Synthesis, 10, 974–976. DOI: 10.2174/15701794113109990065.10.2174/15701794113109990065Search in Google Scholar
Huang, B. H., Li, Z. J., Wang, Y. F., Zhang, K., & Fang, Y X. (2008). Esterification catalyzed by Brönsted acidic ionic liquids. Acta Chimica Sinica, 66, 1837–1844.Search in Google Scholar
Kappe, C. O. (1993). 100 years of the Biginelli dihydropyrimidine synthesis. Tetrahedron, 49, 6937–6963. DOI: 10.1016/s0040-4020(01)87971-0.10.1016/s0040-4020(01)87971-0Search in Google Scholar
Kappe, C. O. (2000). Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Accounts of Chemical Research, 33, 879–888. DOI: 10.1021/ar000048h.10.1021/ar000048hSearch in Google Scholar PubMed
Kolosov, M. A., & Orlov, V. D. (2005). 5-Acetyl-4-aryl-3,4-dihydropyrimidine-(1H)-2-ones derivatives: Synthesis, alkylation and acylation. Zhurnal Organicheskoi Khimii, 3, 17–24. (in Russian)Search in Google Scholar
Maheswara, M., Oh, S. H., Kim, K. T., & Do, J. Y. (2008). Synthesis of 3,4-dihydropyrimidin-2(1H)-ones using HClO4–SiO2 as a heterogeneous and recyclable Catalyst. Bulletin of the Korean Chemical Society, 29, 1752–1754. DOI: 10.5012/bkcs.2008.29.9.1752.10.5012/bkcs.2008.29.9.1752Search in Google Scholar
Nagarathnam, D., Miao, S. W., Lagu, B., Chiu, G., Fang, J., Murali-Dhar, T. G., Zhang, J., Tyagarajan, S., Marzabadi, M. R., Zhang, F. Q., Wong, W. C., Sun, W. Y., Tian, D., Wetzel, J.M., Forray, C., Chang, R. S. L., Broten, T. P., Ransom, R. W., Schorn, T. W., Chen, T. B., O’Malley, S., Kling, P., Schneck, K., Bendesky, R., Harrell, C. M., Vyas, K. P., & Gluchowski, C. (1999). Design and synthesis of novel α1a adrenoceptor-selective antagonists. 1. Structure−activity relationship in dihydropyrimidinones. Journal of Medicinal Chemistry, 42, 4764–4777. DOI: 10.1021/jm990200p.10.1021/jm990200pSearch in Google Scholar PubMed
Patil, A. D., Kumar, N. V., Kokke, W. C., Bean, M. F., Freyer, A. J., De Brosse, C., Mai, S., Truneh, A., & Carte, B. (1995). Novel alkaloids from the Sponge batzella sp.: Inhibitors of HIV gp120-human CD4 binding. The Journal of Organic Chemistry, 60, 1182–1188. DOI: 10.1021/jo00110a021.10.1021/jo00110a021Search in Google Scholar
Rovnyak, G. C., Kimball, S. D., Beyer, B., Cucinotta, G., Di-Marco, J. D., Gougoutas, J., Hedberg, A., Malley, M., & Mc-Carthy, J. P. (1995). Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. Journal of Medicinal Chemistry, 38, 119–129. DOI: 10.1021/jm00001a017.10.1021/jm00001a017Search in Google Scholar PubMed
Roy, S. R., Jadhavar, P. S., Seth, K., Sharma, K. K., & Chakraborti, A. K. (2011). Organocatalytic application of ionic liquids: [bmim][MeSO4] as a recyclable organocatalyst in the multicomponent reaction for the preparation of dihydropyrimidinones and -thiones. Synthesis, 2011, 2261–2267. DOI: 10.1055/s-0030-1260067.10.1055/s-0030-1260067Search in Google Scholar
Safari, J., & Gandomi-Ravandi, S. (2014). A novel protocol for solvent-free synthesis of 4,6-diaryl-3,4-dihydropyrimidine- 2(1H)-ones catalyzed by metal oxide–MWCNTs nanocomposites. Journal of Molecular Structure, 1074, 71–78. DOI: 10.1016/j.molstruc.2014.05.012.10.1016/j.molstruc.2014.05.012Search in Google Scholar
Shaterian, H. R., Ranjbar, M., & Azizi, K. (2011). Synthesis of benzoxanthene derivatives using Brönsted acidic ionic liquids (BAILs), 2-pyrrolidonium hydrogen sulfate and (4-sulfobutyl)tris(4-sulfophenyl)phosphonium hydrogen sulfate. Journal of Molecular Liquids, 162, 95–99. DOI: 10.1016/j.molliq.2011.06.013.10.1016/j.molliq.2011.06.013Search in Google Scholar
Shaterian, H. R., & Aghakhanizadeh, M. (2013). Brönsted reusable acidic ionic liquids catalyzed Biginelli reaction under solvent-free conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 188, 1064–1070. DOI: 10.1080/10426507.2012.710676.10.1080/10426507.2012.710676Search in Google Scholar
Sun, Y., Hienzsch, A., Grasser, J., Herdtweck, E.,& Thiel, W.R. (2006). Novel phosphine ligands bearing 3 (5)-pyrazolyl and 4-(2-amino)pyrimidinyl groups: Synthesis and coordination chemistry. Journal of Organometallic Chemistry, 691, 291–298. DOI: 10.1016/j.jorganchem.2005.08.032.10.1016/j.jorganchem.2005.08.032Search in Google Scholar
Tao, D. J., Wu, Y. T., Zhou, Z., Geng, J., Hu, X. B., & Zhang, Z. B. (2011). Kinetics for the esterification reaction of n-butanol with acetic acid catalyzed by noncorrosive Brönsted acidic ionic liquids. Industrial & Engineering Chemistry Research, 50, 1989–1996. DOI: 10.1021/ie102093e.10.1021/ie102093eSearch in Google Scholar
Wan, J. P., & Pan, Y. J. (2009). Chemo-/regioselective synthesis of 6-unsubstituted dihydropyrimidinones, 1,3-thiazines and chromones via novel variants of Biginelli reaction. Chemical Communications, 2009, 2768–2770. DOI: 10.1039/b901112a.10.1039/b901112aSearch in Google Scholar PubMed
Wan, J. P., Wang, C. P., & Pan, Y. J. (2011). Novel fourcomponent reaction towards diastereoselective synthesis of tetrahydropyrimidinthiones. Tetrahedron, 67, 922–926. DOI: 10.1016/j.tet.2010.12.011.10.1016/j.tet.2010.12.011Search in Google Scholar
© Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Review
- Bimetallic nickel and palladium complexes for catalytic applications
- Original Paper
- Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
- Original Paper
- Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
- Original Paper
- Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
- Original Paper
- Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
- Original Paper
- Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
- Original Paper
- UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
- Original Paper
- Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
- Original Paper
- Effect of sample pre-treatment on isoflavones quantification in soybean
- Original Paper
- TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
- Original Paper
- Flow field in a downward diverging channel and its application
- Original Paper
- Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
- Short Communication
- Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst
Articles in the same Issue
- Review
- Bimetallic nickel and palladium complexes for catalytic applications
- Original Paper
- Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
- Original Paper
- Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
- Original Paper
- Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
- Original Paper
- Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
- Original Paper
- Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
- Original Paper
- UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
- Original Paper
- Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
- Original Paper
- Effect of sample pre-treatment on isoflavones quantification in soybean
- Original Paper
- TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
- Original Paper
- Flow field in a downward diverging channel and its application
- Original Paper
- Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
- Short Communication
- Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst