Startseite Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives

  • Magdy M. Hemdan EMAIL logo und Eman A. El-Bordany
Veröffentlicht/Copyright: 31. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Dodecanoyl isothiocyanate (I) reacts additively with anthranilic acid to afford derivatives of thiourea II and benzothiazine III in a one-pot reaction. The cyclisation of thiourea II was achieved using acetic anhydride to form quinazoline derivative IV. The heating of quinazoline IV in acetic anhydride or butan-1-ol gave quinazoline derivatives V or VI, respectively. Benzothiazine III underwent trans-acylation to benzothiazine VII in boiling acetic anhydride. The treatment of IV with hydrazine hydrate, anthranilic acid or ethyl carbazate afforded derivatives of triazoloquinazoline VIII, quinazolinoquinazoline XI or thiosemicarbazide X, respectively. The reaction of I with 2aminophenol or 2-aminothiophenol afforded thiourea derivative XIII or benzothiazole derivative XIV, respectively. Most of the synthesised compounds bear a lauroyl (dodecanoyl) group (a hydrocarbon moiety). The structures of the synthesised compounds were confirmed by microanalytical and spectral data.

References

Alagarsamy, V., & Pathak, U. S. (2007). Synthesis and antihypertensive activity of novel 3-benzyl-2-substituted-3H-[1, 2, 4]triazolo[5, 1-b]quinazolin-9-ones. Bioorganic & Medicinal Chemistry, 15, 3457–3462. DOI: 10.1016/j.bmc.2007.03. 007.10.1016/j.bmc.2007.03.007">10.1016/j.bmc.2007.03.007Suche in Google Scholar

Alagarsamy, V., Murugesan, S., Dhanabal, K., Murugan, M., & de Clercq, E. (2007). AntiHIV, antibacterial and antifungal activities of some novel 2-methyl-3-(substituted methylamino)-(3H)-quinazolin-4-ones. Indian Journal of Pharmaceutical Sciences, 69, 304–307. DOI: 10.4103/0250474x.33167.10.4103/0250474x.33167">10.4103/0250474x.33167Suche in Google Scholar

Balzarini, J., Van Daele, I., Negri, A., Solaroli, N., Karlsson, A., Liekens, S., Gago, F., & Van Calenbergh, S. (2009). Human mitochondrial thymidine kinase is selectively inhibited by 3′-thiourea derivatives of β-thymidine: Identification of residues crucial for both inhibition and catalytic activity. Molecular Pharmacology, 75, 1127–1136. DOI: 10.1124/mol.108.053785.10.1124/mol.108.053785">10.1124/mol.108.053785Suche in Google Scholar

Barluenga, J., Tomás, M., Ballesteros, A., & López, L. A. (1994). A simple approach to pyrimidine and quinazoline derivatives by [4+2] cycloaddition of 1, 3-diazadienes and enamines. Heterocycles, 37, 1109–1120. DOI: 10.3987/com-93-s123.10.3987/com-93-s123">10.3987/com-93-s123Suche in Google Scholar

Bukvić Krajačić, M., Perić, M., Smith, K. S., Ivezić Schönfeld, Z., Žiher, D., Fajdetić, A., Kujundžić N., Schönfeld, W., Landek, G., Padovan, J., Jelić, D., Ager, A., Milhous, W. K., Ellis, W., Spaventi, R., & Ohrt, C. (2011). Synthesis, structure–activity relationship, and antimalarial activity of ureas and thioureas of 15-membered azalides. Journal of Medicinal Chemistry, 54, 3595–3605. DOI: 10.1021/jm2001585.10.1021/jm2001585">10.1021/jm2001585Suche in Google Scholar

Butin, A. V., Tsiunchik, F. A., Abaev, V. T., Gutnov, A. V., & Cheshkov, D. A. (2009). Aryl ring migration reaction in the synthesis of 2, 4-diaryl-4H-3, 1-benzothiazines. Synthesis, 2009, 2616–2626. DOI: 10.1055/s-0029-1217399.10.1055/s-0029-1217399">10.1055/s-0029-1217399Suche in Google Scholar

Butler, K., & Partridge, M. W. (1959). Cyclic amidines. Part VIII. Derivatives of 12H-6:7:12a-triazabenz[a]anthracene and 5aH-5:6:11a-triazanaphthacene. Journal of Chemical Society, 1959, 1512–1521.10.1039/jr9590001512Suche in Google Scholar

Canon, K. K. (1984). Japan Patent No. JP59197051. Tokyo, Japan: Japan Patent Office.Suche in Google Scholar

Chandrika, P. M., Yakaiah, T., Rao, A. R. R., Narsaiah, B., Reddy, N. C., Sridhar, V., & Rao, J. V. (2008). Synthesis of novel 4,6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. European Journal of Medicinal Chemistry, 43, 846–852. DOI: 10.1016/j.ejmech.2007.06.010.10.1016/j.ejmech.2007.06.010">10.1016/j.ejmech.2007.06.010Suche in Google Scholar

Cohen, E., Klarberg, B., & Vaughan, J. R., Jr. (1960). Quinazolinone sulfonamides. A new class of diuretic agents. Journal of the American Chemical Society, 82, 2731–2735. DOI: 10.1021/ja01496a020.10.1021/ja01496a020">10.1021/ja01496a020Suche in Google Scholar

Ding, Q., Liu, X., Yu, J., Zhang, Q., Wang, D., Cao, B., & Peng, Y. (2012). Access to functionalized 4-benzylidene-4Hbenzo[d][1,3]thiazines via tandem addition-cyclization/cross-coupling reactions. Tetrahedron, 68, 3937–3941. DOI: 10. 1016/j.tet.2012.03.098.10. 1016/j.tet.2012.03.098">10. 1016/j.tet.2012.03.098Suche in Google Scholar

Ding, Q., Lin, Y., Ding, G., Liao, F., Sang, X., & Peng, Y. Y. (2013). New simple synthesis of ring-fused 4-alkyl4H-3,1-benzothiazine-2-thiones: Direct formation from carbon disulfide and (E)-3-(2-aminoaryl)acrylates or (E)-3-(2-aminoaryl)acrylonitriles. Beilstein Journal of Organic Chemistry, 9, 460–466. DOI: 10.3762/bjoc.9.49.10.3762/bjoc.9.49">10.3762/bjoc.9.49Suche in Google Scholar

El-Bordany, E. A. (2012). Addition-cyclization of lauroyl isothiocyanate with hydrazine derivatives as a source of 1,2,4-triazoles. Middle-East Journal of Scientific Research, 11, 266–271.Suche in Google Scholar

El-Hiti, G. A., Hussain, A., Hegazy, A. S., & Alotaibi, M. H. (2011). Thioxoquinazolines: synthesis, reactions and biological activities. Journal of Sulfur Chemistry, 32, 361–395. DOI: 10.1080/17415993.2011.601417.10.1080/17415993.2011.601417">10.1080/17415993.2011.601417Suche in Google Scholar

El-Sayed, R., & Khairou, K. S. (2015). Propoxylated fatty thiazole, pyrazole, triazole, and pyrrole derivatives with antimicrobial and surface activity. Journal of Surfactants and Detergents, 18, 661–673. DOI: 10.1007/s11743-015-1684-8.10.1007/s11743-015-1684-8">10.1007/s11743-015-1684-8Suche in Google Scholar

Fahmy, A. F., Ali, N., Abdelhamid, H., Shiba, S., & Hemdan, M. M. (2010). The utility of p-N-succinimidobenzoyl isothiocyanate in synthesis of benzoxazole, quinazoline, pyrimidine, 1,2,4-triazoline, 1,3-thiazolidine, and thiourea derivatives. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 1536–1542. DOI: 10.1080/10426500903127557.10.1080/10426500903127557">10.1080/10426500903127557Suche in Google Scholar

Gažák, R., Purchartová, K., Marhol, P., Živná, L., Sedmera, P., Valentová, K., Kato, N., Matsumura, H., Kaihatsu, K., & Křen, V. (2010). Antioxidant and antiviral activities of silybin fatty acid conjugates. European Journal of Medicinal Chemistry, 45, 1059–1067. DOI: 10.1016/j.ejmech.2009.11.056.10.1016/j.ejmech.2009.11.056">10.1016/j.ejmech.2009.11.056Suche in Google Scholar

Ghorab, M. M., Ismail, Z. H., Abdalla, M., & Radwan, A. A. (2013). Synthesis, antimicrobial evaluation and molecular modelling of novel sulfonamides carrying a biologically active quinazoline nucleus. Archives of Pharmacal Research, 36, 660–670. DOI: 10.1007/s12272-013-0094-6.10.1007/s12272-013-0094-6">10.1007/s12272-013-0094-6Suche in Google Scholar

Gimbert, C., & Vallribera, A. (2009). A straightforward synthesis of benzothiazines. Organic Letters, 11, 269–271. DOI: 10.1021/ol802346r.10.1021/ol802346r">10.1021/ol802346rSuche in Google Scholar

Grover, G., & Kini, S. G. (2006). Synthesis and evaluation of new quinazolone derivatives of nalidixic acid as potential antibacterial and antifungal agents. European Journal of Medicinal Chemistry, 41, 256–262. DOI: 10.1016/j.ejmech.2005.09.002.10.1016/j.ejmech.2005.09.002">10.1016/j.ejmech.2005.09.002Suche in Google Scholar

Gütschow, M., Schlenk, M., Gäb, J., Paskaleva, M., Alnouri, M. W., Scolari, S., Iqbal, J., & Müller, C. E. (2012). Benzothiazinones: A novel class of adenosine receptor antagonists structurally unrelated to xanthine and adenine derivatives. Journal of Medicinal Chemistry, 55, 33313341. DOI: 10.1021/jm300029s.10.1021/jm300029s">10.1021/jm300029sSuche in Google Scholar

Hadj Salem, J., Humeau, C., Chevalot, I., Harscoat-Schiavo, C., Vanderesse, R., Blanchard, F., & Fick, M. (2010). Effect of acyl donor chain length on isoquercitrin acylation and biological activities of corresponding esters. Process Biochemistry, 45, 382–389. DOI: 10.1016/j.procbio.2009.10.012.10.1016/j.procbio.2009.10.012">10.1016/j.procbio.2009.10.012Suche in Google Scholar

Hayao, S., Havera, H. J., Strycker, W. G., Leipzig, T.J., Kulp, R. A., & Hartzler, H. E. (1965). New sedative and hypotensive 3-substituted 2,4(1H,3H)-quinazolinediones. Journal of Medicinal Chemistry, 8, 807–811. DOI: 10.1021/jm00330a 017.10.1021/jm00330a 017">10.1021/jm00330a 017Suche in Google Scholar

Hemdan, M.M., Fahmy, A. F., Ali, N. F., Hegazi, E., & Abd-Elhaleem, A. (2008). Synthesis of some new heterocycles derived from phenylacetyl isothiocyanate. Chinese Journal of Chemistry, 25, 388–391. DOI: 10.1002/cjoc.200890074.10.1002/cjoc.200890074">10.1002/cjoc.200890074Suche in Google Scholar

Hemdan, M. M. (2010). Synthesis and antimicrobial activities of some heterocyclic systems from 2-furoyl isothiocyanate. Phosphorus, Sulfur, and Silicon and the Related Elements, 185, 620–627. DOI: 10.1080/10426500902893209.10.1080/10426500902893209">10.1080/10426500902893209Suche in Google Scholar

Hemdan, M. M., Fahmy, A. F., & El-Sayed, A. A. (2010). Synthesis and antimicrobial study of 1,2,4-triazole, quinazoline and benzothiazole derivatives from 1-naphthoylisothiocyanate. Journal of Chemical Research, 34, 219–221. DOI: 10.3184/030823410x12707543946812.10.3184/030823410x12707543946812">10.3184/030823410x12707543946812Suche in Google Scholar

Hemdan, M. M., Fahmy, A. F. M., Aly, N. F., Hegazi, I. A., & El-Sayed, A. A. (2012). Utility of phthalimidoacyl isothiocyanate in synthesis of quinazolines, benzoxazoles, benzimidazoles, 1,2,4-triazoles, and oxatriazepines. Phosphorus, Sulfur, and Silicon and the Related Elements, 187, 181–189. DOI: 10.1080/10426507.2011.597804.10.1080/10426507.2011.597804">10.1080/10426507.2011.597804Suche in Google Scholar

Hemdan, M. M., & El-Sayed, A. A. (2015). Synthesis of some new heterocycles derived from novel 2-(1,3-dioxisoindolin-2-yl)benzoyl isothiocyanate. Journal of Heterocyclic Chemistry. DOI: 10.1002/jhet.2287. (in press)10.1002/jhet.2287">10.1002/jhet.2287Suche in Google Scholar

Hemdan, M. M., & Abd El-Mawgoude, H. K. (2015a). Uses of 1-(3-cyano-4,5,6,7-tetrahydrobenzo[b]-thiophen-2-yl)-3-dode-canoylthiourea as a building block in the synthesis of fused pyrimidine and thiazine systems. Chemical and Pharmaceutical Bulletin, 63, 450–456. DOI: 10.1248/cpb.c15-00047.10.1248/cpb.c15-00047">10.1248/cpb.c15-00047Suche in Google Scholar

Hemdan, M. M., & Abd El-Mawgoude, H. K. (2015b). Synthesis and antimicrobial evaluation of thieno[2,3-d]-pyrimidine, thieno[2′,3′:4,5]pyrimido[1,2-a][1,3,5]triazine, thieno[2,3-d]1,3-thiazine and 1,2,4-triazole systems. Chemical and Pharmaceutical Bulletin, 63, 812–818. DOI: 10.1248/cpb.c1500463.10.1248/cpb.c1500463">10.1248/cpb.c1500463Suche in Google Scholar

Khalil, A. A., Abdel Hamide, S. G., Al-Obaid, A. M., & El-Subbagh, H. I. (2003). Substituted quinazolines, part 2. Synthesis and in-vitro anticancer evaluation of new 2-substituted mercapto-3H-quinazoline analogs. Archiv der Pharmazie, 336, 95–103. DOI: 10.1002/ardp.200390011.10.1002/ardp.200390011">10.1002/ardp.200390011Suche in Google Scholar

Kidwai, M., Kukreja, S., Rastogi, S., & Singhal, K. (2007). Microwave accelerated multicomponent synthesis for a novel scaffold of monastrol analogues. Letters in Organic Chemistry, 4, 357–361. DOI: 10.2174/157017807781212085.10.2174/157017807781212085">10.2174/157017807781212085Suche in Google Scholar

Laddha, S. S., & Bhatnagar, S. P. (2008). Rapid microwave-assisted solution phase synthesis of 6,8-disubstituted 2phenyl-3-(substituted benzothiazol-2-yl)-4-[3H] quinazolinones as novel anticonvulsants. Phosphorus, Sulfur, and Silicon and the Related Elements, 183, 2262–2273. DOI: 10.1080/10426500801957766.10.1080/10426500801957766">10.1080/10426500801957766Suche in Google Scholar

Leistner, S., Michael Gütschow, M., & Stach, J. (1990). Mehrcyclische Azine mit Heteroatomen in 1-und 3-Stellung, 25. Mitt.: 2-Amino-4-oxo-4H-3,1-benzothiazine: Darstellung, Dimroth-Umlagerung zu 4-Oxo-2-thioxo-1,2,3,4-tetrahydrochinazolinen und MS/MS-Fragmentierung. Archiv der Pharmazie, 323, 857–862. DOI: 10.1002/ardp.19903231009. (in German)10.1002/ardp.19903231009">10.1002/ardp.19903231009Suche in Google Scholar

Maggio, B., Daidone, G., Raffa, D., Plescia, S., Mantione, L., Cutuli, V. M. C., Mangano, N. G., & Caruso, A. (2001). Synthesis and pharmacological study of ethyl 1-methyl-5(substituted 3,4-dihydro-4-oxoquinazolin-3-yl)-1H-pyrazole-4-acetates. European Journal of Medicinal Chemistry, 36, 737–742. DOI: 10.1016/s0223-5234(01)01259-4.10.1016/s0223-5234(01)01259-4">10.1016/s0223-5234(01)01259-4Suche in Google Scholar

Mosaad, S. M., Mohammed, K. I., Ahmed, M. A., & Abdel-Hamide, S. G. (2004). Synthesis of certain new 6-iodoquin azolines as potential antitubercular agents. Journal of Applied Sciences, 4, 302–307 DOI: 10.3923/jas.2004.302.307.10.3923/jas.2004.302.307">10.3923/jas.2004.302.307Suche in Google Scholar

Obayashi, T., & Okawa, A. (2001). Japan Patent No. JP200125 3172. Tokyo, Japan: Japan Patent Office.Suche in Google Scholar

Okuda, K., Zhang, Y. X., Ohtomo, H., Hirota, T., & Sasaki, K. (2010). Polycyclic N-heterocyclic compounds. Part 62: Reaction of N-(quinazolin-4-yl)amidine derivatives with hydroxylamine hydrochloride and anti-platelet aggregation activity of the products. Chemical and Pharmaceutical Bulletin, 58, 369–374. DOI: 10.1248/cpb.58.369.10.1248/cpb.58.369">10.1248/cpb.58.369Suche in Google Scholar

Raffa, D., Edler, M. C., Daidone, G., Maggio, B., Merickech, M., Plescia, S., Schillaci, D., Bai, R., & Hamel, E. (2004). Synthesis, cytotoxicity, and inhibitory effects on tubulin polymerization of a new 3-heterocyclo substituted 2-styrylquinazolinones. European Journal of Medicinal Chemistry, 39, 299–304. DOI: 10.1016/j.ejmech.2003.12.009.10.1016/j.ejmech.2003.12.009">10.1016/j.ejmech.2003.12.009Suche in Google Scholar

Roopan, S. M., Maiyalagan, T., & Khan, F. N. (2008). Solvent-free syntheses of some quinazolin-4(3H)-ones derivatives. Canadian Journal of Chemistry, 86, 1019–1025. DOI: 10.1139/v08-149.10.1139/v08-149">10.1139/v08-149Suche in Google Scholar

Schleiss, M., Eickhoff, J., Auerochs, S., Leis, M., Abele, S., Rechter, S., Choi, Y., Anderson, Y., Scott, G., Rawlinson, W., Michel, D., Ensminger, S., Klebl, B., Stamminger, T., & Marschall, M. (2008). Protein kinase inhibitors of the quinazoline class exert anti-cytomegaloviral activity in vitro and in vivo. Antiviral Research, 79, 49–61. DOI: 10.1016/j.antiviral.2008.01.154.10.1016/j.antiviral.2008.01.154">10.1016/j.antiviral.2008.01.154Suche in Google Scholar

Sharma, S. K., Wu, Y., Steinbergs, N., Crowley, M. L., Hanson, A. S., Casero, R. A., Jr., & Woster, P. M. (2010). (Bis)urea and (bis)thiourea inhibitors of lysine-specific demethylase 1 as epigenetic modulators. Journal of Medicinal Chemistry, 53, 5197–5212. DOI: 10.1021/jm100217a.10.1021/jm100217a">10.1021/jm100217aSuche in Google Scholar

Shestakov, A. S., Prezent, M. A., Zlatoustovskaya, E. O., Shikhaliev, K. S., Falaleev, A. V., & Sidorenko, O. E. (2015). Alkylation of 1,3-benzothiazin-4-one 2-oxo-, 2-arylimino-, and 2-thioxo derivatives. Chemistry of Heterocyclic Compounds, 51, 370–376. DOI: 10.1007/s10593-015-1709-2.10.1007/s10593-015-1709-2">10.1007/s10593-015-1709-2Suche in Google Scholar

Simerpreet, & Cannoo, D. S. (2013). Synthesis and biological evaluation of 1,3-thiazines – a review. Pharmacophore, 4, 70–88.Suche in Google Scholar

Uher, M., Berkeš, D., Leško, J., & Floch, I. (1983). Reactions of carbonyl isothiocyanates with nucleophilic bifunctional reagents. Collection of Czechoslovak Chemical Communications, 48, 1651–1658. DOI: 10.1135/cccc19831651.10.1135/cccc19831651">10.1135/cccc19831651Suche in Google Scholar

Yadav, L. D. S., Rai, V. K., & Yadav, B. S. (2009). The first ionic liquid-promoted one-pot diastereoselective synthesis of 2,5-diamino-/2-amino-5-mercapto-1,3-thiazin-4-ones using masked amino/mercapto acids. Tetrahedron, 65, 1306–1315. DOI: 10.1016/j.tet.2008.12.050.10.1016/j.tet.2008.12.050">10.1016/j.tet.2008.12.050Suche in Google Scholar

Yavari, I., Nematpour, M., & Hossaini, Z. (2010). Ph3Pmediated one-pot synthesis of functionalized 3,4-dihydro2H-1,3-thiazines from N,N′-dialkylthioureas and activated acetylenes in water. Monatshefte für Chemie – Chemical Monthly, 141, 229–232. DOI: 10.1007/s00706-009-0247-y.10.1007/s00706-009-0247-y">10.1007/s00706-009-0247-ySuche in Google Scholar

Received: 2015-8-15
Revised: 2015-12-7
Accepted: 2015-12-16
Published Online: 2016-3-31
Published in Print: 2016-8-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Review
  2. Bimetallic nickel and palladium complexes for catalytic applications
  3. Original Paper
  4. Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
  5. Original Paper
  6. Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
  7. Original Paper
  8. Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
  9. Original Paper
  10. Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
  11. Original Paper
  12. Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
  13. Original Paper
  14. UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
  15. Original Paper
  16. Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
  17. Original Paper
  18. Effect of sample pre-treatment on isoflavones quantification in soybean
  19. Original Paper
  20. TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
  21. Original Paper
  22. Flow field in a downward diverging channel and its application
  23. Original Paper
  24. Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
  25. Short Communication
  26. Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0042/html
Button zum nach oben scrollen