Startseite Effect of sample pre-treatment on isoflavones quantification in soybean
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of sample pre-treatment on isoflavones quantification in soybean

  • Magdalena Wójciak-Kosior EMAIL logo , Ireneusz Sowa , Grażyna Szymczak , Karolina Zapała , Ryszard Kocjan und Tomasz Blicharski
Veröffentlicht/Copyright: 31. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

High performance liquid chromatography is the most common technique for analysing isoflavones in soy; however, the appropriate sample pre-treatment is required, including extraction and, often, hydrolysis. In the present work, the kinetics of extraction was investigated with regard to the number of extraction steps and their duration for the exhaustive extraction of bonded forms of isoflavones and aglycones. In addition, a systematic experimental study of hydrolysis depending on the temperature and acidity of the medium was conducted. The results showed that the assisted methods were more effective for the isolation of isoflavones. Moreover, the differences between the results obtained using ultrasound-assisted extraction (UAE), microwave-assisted extraction and pressurised liquid extraction were not statistically significant; however, the appropriate number of extraction steps and their duration for UAE were required. The investigation also revealed that, due to the varying susceptibility of glycosides on conversion to free forms and the stability of the aglycones obtained, two parallel hydrolysis procedures should be conducted to obtain the highest hydrolysis efficiency. The optimised conditions, taking into account the shortest time combined with the highest efficiency, were as follows: 4 M HCl and 60 min for genistein; 8 M HCl and 30 min for glycitein and daidzein.

References

Achouri, A., Boye, J. I., & Belanger, D. (2005). Soybean isoflavones: Efficacy of extraction conditions and effect of food type on extractability. FoodResearchInternational, 38, 1199–1204. DOI: 10.1016/j.foodres.2005.05.005.10.1016/j.foodres.2005.05.005">10.1016/j.foodres.2005.05.005Suche in Google Scholar

Biesaga, M. (2011). Influence of extraction methods on stability of flavonoids. JournalofChromatographyA, 1218, 2505– 2512, DOI: 10.1016/j.chroma.2011.02.059.10.1016/j.chroma.2011.02.059">10.1016/j.chroma.2011.02.059Suche in Google Scholar

Chemat, F., Zill-e-Huma, & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. UltrasonicsSonochemistry, 18, 813–835, DOI: 10.1016/j.ultsonch.2010.11.023.10.1016/j.ultsonch.2010.11.023">10.1016/j.ultsonch.2010.11.023Suche in Google Scholar

Chiang, W. D., Shih, C. J., & Chu, Y. H. (2001). Optimization of acid hydrolysis conditions for total isoflavones analysis in soybean hypocotyls by using RSM. FoodChemistry, 72, 499–503. DOI: 10.1016/s0308-8146(00)00253-3.10.1016/s0308-8146(00)00253-3">10.1016/s0308-8146(00)00253-3Suche in Google Scholar

Csupor, D., Bognár, J., & Karsai, J. (2015). An optimized method for the quantification of isoflavones in dry soy extract containing products. FoodAnalyticalMethods, 8, 2515–2523. DOI: 10.1007/s12161-015-0143-5.10.1007/s12161-015-0143-5">10.1007/s12161-015-0143-5Suche in Google Scholar

Griffith, A. P., & Collison, M. W. (2001). Improved methods for the extraction and analysis of isoflavones from soy-containing foods and nutritional supplements by reversed-phase high-performance liquid chromatography and liquid chromatography–mass spectrometry. JournalofChromatographyA, 913, 397–413. DOI: 10.1016/s0021-9673(00)01077-3.10.1016/s0021-9673(00)01077-3">10.1016/s0021-9673(00)01077-3Suche in Google Scholar

Gurfinkel, D. M., & Rao, A. V. (2003). Soyasaponins: The relationship between chemical structure and colon anticarcinogenic activity. NutritionandCancer, 47, 24–33. DOI: 10.1207/s15327914nc4701 3.10.1207/s15327914nc4701 3">10.1207/s15327914nc4701 3Suche in Google Scholar

Jiang, H. Y., Lu, F. J., & Tai, J. X. (2000). Bioactive components of soybean and their functions. SoybeanScience, 19, 160–164.Suche in Google Scholar

Klump, S. P., Allred, M. C., MacDonald, J. L., & Ballam, J. M. (2001). Determination of isoflavones in soy and selected foods containing soy by extraction, saponification and liquid chromatography: Collaborative study. JournalofAOACInternational, 84, 18651883.10.1093/jaoac/84.6.1865Suche in Google Scholar

Li, H., Hu, G. Q., & Li, D. (2009). Application of the microwave-assisted process to the fast extraction of isoflavone from the waste residue of the soybeans. BulletinoftheKoreanChemicalSociety, 30, 2687–2690. DOI: 10.5012/bkcs.2009.30.11. 2687.10.5012/bkcs.2009.30.11. 2687">10.5012/bkcs.2009.30.11. 2687Suche in Google Scholar

Luthria, D. L., Biswas, R., & Natarajan, S. (2007). Comparison of extraction solvents and techniques used for the assay of isoflavones from soybean. FoodChemistry, 105, 325–333. DOI: 10.1016/j.foodchem.2006.11.047.10.1016/j.foodchem.2006.11.047">10.1016/j.foodchem.2006.11.047Suche in Google Scholar

Messina, M. J., & Wood, C. E. (2008). Soy isoflavones, estrogen therapy and breast cancer risk: Analysis and commentary. NutritionJournal, 7, 17. DOI: 10.1186/1475-2891-7-17.10.1186/1475-2891-7-17">10.1186/1475-2891-7-17Suche in Google Scholar

Messina, M., & Messina, V. (2010). The role of soy in vegetarian diets. Nutrients, 2, 855–888. DOI: 10.3390/nu2080855.10.3390/nu2080855">10.3390/nu2080855Suche in Google Scholar

Murphy, P. A., Barua, K., & Hauck, C. C. (2002). Solvent extraction selection in the determination of isoflavones in soy foods. JournalofChromatographyB, 777, 129–138. DOI: 10.1016/s1570-0232(02)00342-2.10.1016/s1570-0232(02)00342-2">10.1016/s1570-0232(02)00342-2Suche in Google Scholar

Picó, Y. (2013). Ultrasound-assisted extraction for food and environmental samples. TrACTrendsinAnalyticalChemistry, 43, 84–99. DOI: 10.1016/j.trac.2012.12.005.10.1016/j.trac.2012.12.005">10.1016/j.trac.2012.12.005Suche in Google Scholar

Rostagno, M. A., Palma, M., & Barroso, C. G. (2003). Ultrasound-assisted extraction of soy isoflavones. JournalofChromatographyA, 1012, 119–128. DOI: 10.1016/s00219673(03)01184-1.10.1016/s00219673(03)01184-1">10.1016/s00219673(03)01184-1Suche in Google Scholar

Rostagno, M. A., Palma, M., & Barroso, C. G. (2004). Pressurized liquid extraction of isoflavones from soybeans. AnalyticaChimicaActa, 522, 169–177. DOI: 10.1016/j.aca.2004.05.078.10.1016/j.aca.2004.05.078">10.1016/j.aca.2004.05.078Suche in Google Scholar

Rostagno, M. A., Palma, M., & Barroso, C. G. (2007). Microwave assisted extraction of soy isoflavones. AnalyticaChimicaActa, 588, 274–282. DOI: 10.1016/j.aca.2007.02.010.10.1016/j.aca.2007.02.010">10.1016/j.aca.2007.02.010Suche in Google Scholar

Rostagno, M. A., Villares, A., Guillamón, E., García-Lafuente, A., & Martínez, J. A. (2009). Sample preparation for the analysis of isoflavones from soybeans and soy foods. JournalofChromatographyA, 1216, 2–29. DOI: 10.1016/j.chroma. 2008.11.035.10.1016/j.chroma. 2008.11.035">10.1016/j.chroma. 2008.11.035Suche in Google Scholar

Rowland, I., Faughnan, M., Hoey, L., Wähälä, K., Williamson, G., & Cassidy, A. (2003). Bioavailability of phyto-oestrogens. BritishJournalofNutrition, 89, S45–S58. DOI: 10.1079/ bjn2002796.10.1079/ bjn2002796">10.1079/ bjn2002796Suche in Google Scholar

Shao, S. Q., Duncan, A. M., Yang, R., Marcone, M. F., Rajcan, I., & Tsao, R. (2011). Systematic evaluation of pre-HPLC sample processing methods on total and individual isoflavones in soybeans and soy products. FoodResearchInternational, 44, 2425–2434. DOI: 10.1016/j.foodres.2010.12. 041.10.1016/j.foodres.2010.12. 041">10.1016/j.foodres.2010.12. 041Suche in Google Scholar

Silva, L. R., Pereira, M. J., Azevedo, J., Gon¸calves, R. F., Valent˜ao, P., de Pinho, P. G., & Andrade, P. B. (2013). Glycinemax (L.) Merr., Vignaradiata L. and Medicagosativa L. sprouts: A natural source of bioactive compounds. FoodResearchInternational, 50, 167–175. DOI: 10.1016/j.foodres.2012.10.025.10.1016/j.foodres.2012.10.025">10.1016/j.foodres.2012.10.025Suche in Google Scholar

Uesugi, T., Fukui, Y., & Yamori, Y. (2002). Beneficial effects of soybean isoflavone supplementation on bone metabolism and serum lipids in postmenopausal Japanese women: A four-week study. JournaloftheAmericanCollegeofNutrition, 21, 97–102. DOI: 10.1080/07315724.2002.10719200.10.1080/07315724.2002.10719200">10.1080/07315724.2002.10719200Suche in Google Scholar

Yang, G., Shu, X. O., Li, H., Chow, W. H., Cai, H., Zhang, X., Gao, Y. T., & Zheng, W. (2009). Prospective cohort study of soy food intake and colorectal cancer risk in women. AmericanJournalofClinicalNutrition, 89, 577–583. DOI: 10.3945/ajcn.2008.26742.10.3945/ajcn.2008.26742">10.3945/ajcn.2008.26742Suche in Google Scholar

Received: 2015-9-25
Revised: 2015-12-17
Accepted: 2015-12-23
Published Online: 2016-3-31
Published in Print: 2016-8-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Review
  2. Bimetallic nickel and palladium complexes for catalytic applications
  3. Original Paper
  4. Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
  5. Original Paper
  6. Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
  7. Original Paper
  8. Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
  9. Original Paper
  10. Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
  11. Original Paper
  12. Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
  13. Original Paper
  14. UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
  15. Original Paper
  16. Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
  17. Original Paper
  18. Effect of sample pre-treatment on isoflavones quantification in soybean
  19. Original Paper
  20. TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
  21. Original Paper
  22. Flow field in a downward diverging channel and its application
  23. Original Paper
  24. Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
  25. Short Communication
  26. Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0037/html
Button zum nach oben scrollen