Startseite Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride

  • Matej Maťaťa , Alžbeta Cibulová , Ľudovít Varečka und Martin Šimkovič EMAIL logo
Veröffentlicht/Copyright: 31. März 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The ability of Trichoderma atroviride F-534 to utilize plant waste byproducts derived from processing of vegetables and fruits, as the major source of organic carbon and nitrogen for growth and protease production, was tested. The submerged cultivation of T. atroviride F-534 in the mineral base of the Czapek–Dox medium supplemented with plant waste byproducts resulted into copious biomass formation and was accompanied by secretion of several proteolytic enzymes. Zymography analysis of fungal culture filtrates showed that the high-molecular weight (HMW)protease(s)(from 100 k Da to 230 kDa) represent the major portion of secreted enzymes. Serine-type proteases and metalloproteases were predominant, although all known types of proteolytic enzymes were detected dependent on the type of inducer (substrate). The most conspicuous feature of secreted proteases was that the zymography patterns were unique for each plant material tested. These results confirm our previous finding obtained with purified proteins. Results also suggest that HMW protease(s) may participatein the heterotrophic/saprophytic/mode of life of this fungus. Their identity remains, however, obscure.

Acknowledgements

This work was supported by the Slovak Research and Development Agency under the contract No. APVV-0719-12, and by the project ITMS 26240220071 funded by the ERDF.

References

Agosin, E., & Aguileram, J. M. (1998). Industrial production of active propagules of Trichoderma for agricultural uses. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma and Gliocladium. Enzymes, biological control and commercial applications (pp. 205–227). London, UK: Taylor & Francis.Suche in Google Scholar

Atanasova, L., Le Crom, S., Gruber, S., Coulpier, F., Seidl-Seiboth, V., Kubicek, C. P., & Druzhinina, I. S. (2013). Comparative transcriptomics reveals different strategies of Trichoderma mycoparasitism. BMC Genomics, 14, 121. DOI: 10.1186/1471-2164-14-121.10.1186/1471-2164-14-121">10.1186/1471-2164-14-121Suche in Google Scholar

Baldo, A., Monod, M., Mathy, A., Cambier, L., Bagut, E. T., Defaweux, V., Symoens, F., Antoinen, N., & Mignon, B. (2012). Mechanisms of skin adherence and invasion by dermatophytes. Mycoses, 55, 218–223. DOI: 10.1111/j.14390507.2011.02081.x.10.1111/j.14390507.2011.02081.x">10.1111/j.14390507.2011.02081.xSuche in Google Scholar

Beagle-Ristaino, J. E., & Papavizas, G. C. (1985a). Biological control of Rhizoctonia stem canker and black scurf of potato. Phytopatology, 75, 560–563.10.1094/Phyto-75-560Suche in Google Scholar

Beagle-Ristaino, J. E., & Papavizas, G. C. (1985b). Survival and proliferation of propagules of Trichoderma spp. and Gliocladium virens in soil and in plant rhizospheres. Phytopatology, 75, 729–732.10.1094/Phyto-75-729Suche in Google Scholar

Benítez, T., Rincón, A. M., Limón, M.C., & Codón, A. C. (2004). Biocontrol mechanisms of Trichoderma strains. International Microbiology, 7, 249–260.Suche in Google Scholar

Cal, S., Quesada, V., Garabaya, C., & López-Otín, C. (2003). Polyserase-I, a human polyprotease with the ability to generate independent serine protease domains from a single translation product. Proceedings of the National Academy of Sciences of the USA, 100, 9185–9190. DOI: 10.1073/pnas.1633 392100.10.1073/pnas.1633 392100">10.1073/pnas.1633 392100Suche in Google Scholar

Charney, J., & Tomarelli, R. M. (1947). A colorimetric method for the determination of the proteolytic activity of duodenal juice. The Journal of Biological Chemistry, 171, 501–505.10.1016/S0021-9258(17)41059-3Suche in Google Scholar

Czapek, F. (1902). Untersnehengen ¨uber die Stiekstoff Gewinnung und Eiweißbildung der Pflanzen. Beitraege z¨ur Chemischen Physiologie und Pathologie, 1, 540–560. (in German)Suche in Google Scholar

De Marco, J. L., & Felix, C. R. (2002). Characterization of a protease produced by a Trichoderma harzianum isolate which controls cocoa plant witches’ broom disease. BMCBiochemistry, 3, 3. DOI: 10.1186/1471-2091-3-3.10.1186/1471-2091-3-3">10.1186/1471-2091-3-3Suche in Google Scholar

Delgado-Jarana, J., Rincón, A. M., & Benítez, T. (2002). Aspartyl protease from Trichoderma harzianum CECT 2413: cloning and characterization. Microbiology, 148, 1305–1315. DOI: 10.1099/00221287-148-5-1305.10.1099/00221287-148-5-1305">10.1099/00221287-148-5-1305Suche in Google Scholar

Dox, A. W. (1910). The intracellular enzymes of Penicillium and Aspergillus with special reference to those of P. camemberti. United States Department of Agriculture, Bureau of Animal Industry, Bulletin, 120, 120–170.Suche in Google Scholar

Druzhinina, I. S., Shelest, E., & Kubicek, C. P. (2012). Novel traits of Trichoderma predicted through the analysis of its secretome. FEMS Microbiology Letters, 337, 1–9. DOI: 10.1111/j.1574-6968.2012.02665.x.10.1111/j.1574-6968.2012.02665.x">10.1111/j.1574-6968.2012.02665.xSuche in Google Scholar

Eijsink, V., Hoell, I., & Vaaje-Kolstada, G. (2010). Structure and function of enzymes acting on chitin and chitosan. Biotechnology & Genetic Engineering Reviews, 27, 331–366. DOI: 10.1080/02648725.2010.10648156.10.1080/02648725.2010.10648156">10.1080/02648725.2010.10648156Suche in Google Scholar

Farnell, E., Rousseau, K., Thornton, D. J., Bowyer, P., & Her-rick, S. E. (2012). Expression and secretion of Aspergillus fumigatus proteases are regulated in response to different protein substrates. Fungal Biology, 116, 1003–1012. DOI: 10.1016/j.funbio.2012.07.004.10.1016/j.funbio.2012.07.004">10.1016/j.funbio.2012.07.004Suche in Google Scholar

Geremia, R. A., Goldman, G. H., Jacobs, D., Ardiles, W., Vila, S. B., Van Montagu, M., & Herrera-Estrella, A. (1993). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. Molecular Microbiology, 8, 603–613. DOI: 10.1111/j.13652958.1993.tb01604.x.10.1111/j.13652958.1993.tb01604.x">10.1111/j.13652958.1993.tb01604.xSuche in Google Scholar

Grinyer, J., McKay, M., Nevalainen, H., & Herbert, B. R. (2004). Fungal proteomics: initial mapping of biological control strain Trichoderma harzianum. Current Genetics, 45, 163–169. DOI: 10.1007/s00294-003-0474-4.10.1007/s00294-003-0474-4">10.1007/s00294-003-0474-4Suche in Google Scholar

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species – opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2, 43–56. DOI: 10.1038/nrmicro797.10.1038/nrmicro797">10.1038/nrmicro797Suche in Google Scholar

Harris, W. A. (1962). Determination of amino nitrogen, pyrrolidone carboxylic acid nitrogen, total nitrogen with ninhydrin. Journal of the American Society of Sugar Beet Technology, 12, 200–209.10.5274/jsbr.12.3.200Suche in Google Scholar

Hjeljord, L., & Tronsmo, A. (1998). Trichoderma and Gliocladium in biological control: an overview. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma and Gliocladium. Enzymes, biological control and commercial applications (pp. 131–152). London, UK: Taylor & Francis.Suche in Google Scholar

Karlsson, C. H., Andersson, M. L., Collin, M., Schmidtchen, A., Bj¨orck, L., & Frick, I. M. (2007). SufA—a novel subtilisin-like serine proteinase of Finegoldia magna. Microbiology, 153, 4208–4218. DOI: 10.1099/mic.0.2007/010322-0.10.1099/mic.0.2007/010322-0">10.1099/mic.0.2007/010322-0Suche in Google Scholar

Kredics, L., Antal, Z., Szekeres, A., Hatvani, L., Manczinger, L., Vágv¨olgyi, C., & Nagy, E. (2005). Extracellular proteases of Trichoderma species. A review. Acta Microbiologica et Immunologica Hungarica, 52, 169–184. DOI: 10.1556/amicr.52.2005.2.3.10.1556/amicr.52.2005.2.3">10.1556/amicr.52.2005.2.3Suche in Google Scholar

Kubicek, C. P., & Penttilä, M. (1998). Regulation of production of plant polysaccharide degrading enzymes by Trichoderma. In G. E. Harman, & C. P. Kubicek (Eds.), Trichoderma and Gliocladium. Enzymes, Biological Control and Commercial Applications (pp. 49–72). London, UK: Taylor & Francis.Suche in Google Scholar

Landowski, C. P., Huuskonen, A., Wahl, R., Westerholm-Parvinen, A., Kanerva, A., Hänninen, A. L., Salovuori, N., Penttilä, M., Natunen, J., Ostermeier, C., Helk, B., Saarinen, J., & Saloheimo, M. (2015). Enabling low cost biopharmaceuticals: A systematic approach to delete proteases from a well-known protein production host Trichoderma reesei. PLoS One, 10, e0134723. DOI: 10.1371/journal.pone.0134723.10.1371/journal.pone.0134723">10.1371/journal.pone.0134723Suche in Google Scholar

López-Otín, C., & Bond, J. S. (2008). Proteases: Multifunctional enzymes in life and disease. The Journal of Biological Chemistry, 283, 30433–30437. DOI: 10.1074/jbc.r800035200.10.1074/jbc.r800035200">10.1074/jbc.r800035200Suche in Google Scholar

Markovich, N. A., & Kononova, G. L. (2003). Lytic enzymes of Trichoderma and their role in plant defense from fungal diseases: a review. Applied Biochemistry and Microbiology, 39, 341–351. DOI: 10.1023/a:1024502431592.10.1023/a:1024502431592">10.1023/a:1024502431592Suche in Google Scholar

Mosolov, V. V., & Valueva, T. A. (2006). Participation of proteolytic enzymes in the interaction of plants with phytopathogenic microorganisms. Biochemistry (Moscow), 71, 838–845. DOI: 10.1134/s0006297906080037.10.1134/s0006297906080037">10.1134/s0006297906080037Suche in Google Scholar

Nagornyy, V. D. (2013). Soil and plant laboratory analysis. Moscow, Russia: Peoples’ Friendship University of Russia.Suche in Google Scholar

Nielsen, M. L., Vermeulen, M., Bonaldi, T., Cox, J., Moroder, L., & Mann, M. (2008). Iodoacetamide-induced artifact mimics ubiquitination in mass spectrometry. Nature Methods, 5, 459–460. DOI: 10.1038/nmeth0608-459.10.1038/nmeth0608-459">10.1038/nmeth0608-459Suche in Google Scholar

Olejníková, P., Hudecová, D., Burgstaller, W., Kryštofová, S., & Varečka, Ľ. (2011). Transient excretion of succinate from Trichoderma atroviride submerged mycelia reveals the complex movements and metabolism of carboxylates. Antonie Van Leeuwenhoek, 100, 55–66. DOI: 10.1007/s10482-011-9564-3.10.1007/s10482-011-9564-3">10.1007/s10482-011-9564-3Suche in Google Scholar

Olmedo-Monfil, V., Mendoza-Mendoza, A., Gómez, I., Cortés, C., Herrera-Estrella, A. (2002). Multiple environmental signals determine the transcriptional activation of the mycoparasitism related gene prb1 in Trichoderma atroviride. Molecular Genetics and Genomics, 267, 703–712. DOI: 10.1007/s00438-002-0703-4.10.1007/s00438-002-0703-4">10.1007/s00438-002-0703-4Suche in Google Scholar

Papavizas, G. C., Dunn, M. T., Lewis, J. A., & Beagle-Ristaino, J. E. (1984). Liquid fermantation technology for experimental production of biocontrol fungi. Phytopatology, 74, 1171– 1175.10.1094/Phyto-74-1171Suche in Google Scholar

Pozo, M. J., Baek, J.M., García, J.M., & Kenerley, C. M. (2004). Functional analysis of tvsp1, a serine protease-encoding gene in the biocontrol agent Trichoderma virens. Fungal Genetics and Biology, 41, 336–348. DOI: 10.1016/j. fgb.2003.11.002.10.1016/j. fgb.2003.11.002">10.1016/j. fgb.2003.11.002Suche in Google Scholar

Rao, M. B., Tanksale, A. M., Ghatge, M. S., & Deshpande, V. V. (1998). Molecular and biotechnological aspects of microbial proteases. Microbiology and Molecular Biology Reviews, 62, 597–635.10.1128/MMBR.62.3.597-635.1998Suche in Google Scholar

Reithner, B., Ibarra-Laclette, E., Mach, R. L., & Herrera-Estrella, A. (2011). Identification of Mycoparasitism-Related Genes in Trichoderma atroviride. Applied and Environmental Microbiology, 77, 4361–4370. DOI: 10.1128/aem.0012911.10.1128/aem.0012911">10.1128/aem.0012911Suche in Google Scholar

Schäfer, T., Kirk, O., Borchert, T. V., & Fuglsang, C. C. (2005). Enzymes for technical Applications. In S. R. Fahnestock, & A. Steinb¨uchel (Eds.), Biopolymers (pp. 377–437). New York, NY, USA: Wiley.Suche in Google Scholar

Schumacher, B. A. (2002). Methods for determination of total organic carbon (TOC) in soils and sediments. Las Vegas, NV, USA: United States Environmental Protection Agency, Environmental Sciences Division, National Exposure Research Laboratory.Suche in Google Scholar

Seidl, V., Song, L., Lindquist, E., Gruber, S., Koptchinskiy, A., Zeilinger, S., Schmoll, M., Martínez, P., Sun, J., Grigoriev, I., Herrera-Estrella, A., Baker, S. E., Kubicek, C. P. (2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics, 10, 567. DOI: 10.1186/1471-2164-10-567.10.1186/1471-2164-10-567">10.1186/1471-2164-10-567Suche in Google Scholar

Šimkovič, M., Gdovinová, A., Zemková, Z., & Varečka, Ľ. (2012). Properties of secreted protease from vegetative Trichoderma atroviride mycelia cultivated with protein inducer reveal a complex protein-recognition mechanism. Antonie Van Leeuwenhoek, 101, 253–265. DOI: 10.1007/s10482-0119629-3.10.1007/s10482-0119629-3">10.1007/s10482-0119629-3Suche in Google Scholar

Stricker, A. R., Mach, R. L., & de Graaff, L. H. (2008). Regulation of transcription of cellulases-and hemicellulasesencoding genes in Aspergillus niger and Hypocrea jecorina (Trichoderma reesei). Applied Microbiology and Biotechnology, 78, 211–220. DOI: 10.1007/s00253-007-1322-0.10.1007/s00253-007-1322-0">10.1007/s00253-007-1322-0Suche in Google Scholar

Suarez, B., Rey, M., Castillo, P., Monte, E., & Llobell, A. (2004). Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Applied Microbiology and Biotechnology, 65, 46–55. DOI: 10.1007/s00253004-1610-x.10.1007/s00253004-1610-x">10.1007/s00253004-1610-xSuche in Google Scholar

Suárez, M. B., Sanz, L., Chamorro, M. I., Rey, M., González, F. J., Llobell, A., & Monte, E. (2005). Proteomic analysis of secreted proteins from Trichoderma harzianum. Identification of a fungal cell wall-induced aspartic protease. Fungal Genetics and Biology, 42, 924–934. DOI: 10.1016/j.fgb.2005.08.002.10.1016/j.fgb.2005.08.002">10.1016/j.fgb.2005.08.002Suche in Google Scholar

Suárez, M. B., Vizcaíno, J. A., Llobell, A., & Monte, E. (2007). Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Current Genetics, 51, 331–342. DOI: 10.1007/s00294-007-0130-5.10.1007/s00294-007-0130-5">10.1007/s00294-007-0130-5Suche in Google Scholar

Szekeres, A., Kredics, L., Antal, Z., Kevei, F., & Manczinger, L. (2004). Isolation and characterization of protease overproducing mutants of Trichoderma harzianum. FEMS Microbiology Letters, 233, 215–222. DOI: 10.1111/j.1574-6968.2004. tb09485.x.10.1111/j.1574-6968.2004. tb09485.x">10.1111/j.1574-6968.2004. tb09485.xSuche in Google Scholar

Takeda, N., Kistner, C., Kosuta, S., Winzer, T., Pitzschke, A., Groth, M., Sato, S., Kaneko, T., Tabata, S., & Parniske, M. (2007). Proteases in plant root symbiosis. Phytochemistry, 68, 111–121. DOI: 10.1016/j.phytochem.2006.09.022.10.1016/j.phytochem.2006.09.022">10.1016/j.phytochem.2006.09.022Suche in Google Scholar

Uchikoba, T., Mase, T., Arima, K., Yonezawa, H., & Kaneda, M. (2001). Isolation and characterization of a trypsin-like protease from Trichoderma viride. Biological Chemistry, 382, 1509–1513. DOI: 10.1515/bc.2001.185.10.1515/bc.2001.185">10.1515/bc.2001.185Suche in Google Scholar

Uckoo, R. M., Jayaprakasha, G. K., Nelson, S. D., & Patil, B. S. (2011). Rapid simultaneous determination of amines and organic acids in citrus using high-performance liquid chromatography. Talanta, 83, 948–954. DOI: 10.1016/j.talanta. 2010.10.063.10.1016/j.talanta. 2010.10.063">10.1016/j.talanta. 2010.10.063Suche in Google Scholar

Viterbo, A., Ramot, O., Chemin, L., & Chet, I. (2002). Significance of lytic enzymes from Trichoderma spp. in the biocontrol of fungal plant pathogens. Antonie Van Leeuwenhoek, 81, 549–556. DOI: 10.1023/a:1020553421740.10.1023/a:1020553421740">10.1023/a:1020553421740Suche in Google Scholar

Viterbo, A., Harel, M., & Chet, I. (2004). Isolation of two aspartyl proteases from Trichoderma asperellum expressed during colonization of cucumber roots. FEMS Microbiology Letter, 238, 151–158. DOI: 10.1111/j.15746968.2004.tb09750.x.10.1111/j.15746968.2004.tb09750.x">10.1111/j.15746968.2004.tb09750.xSuche in Google Scholar

Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter, and proposed modification of the chromic acid tritation method. Soil Science, 37, 29–38.10.1097/00010694-193401000-00003Suche in Google Scholar

Received: 2015-10-9
Revised: 2016-1-15
Accepted: 2016-1-15
Published Online: 2016-3-31
Published in Print: 2016-8-1

© 2016 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Review
  2. Bimetallic nickel and palladium complexes for catalytic applications
  3. Original Paper
  4. Enantiomeric purity control of R-cinacalcet in pharmaceutical product by capillary electrophoresis
  5. Original Paper
  6. Sensitive electrogravimetric immunoassay of hepatitis B surface antigen through hyperbranched polymer bridge linked to multiple secondary antibodies
  7. Original Paper
  8. Plant waste residues as inducers of extracellular proteases for a deuteromycete fungus Trichoderma atroviride
  9. Original Paper
  10. Bioremediation of PCB-contaminated sediments and evaluation of their pre- and post-treatment ecotoxicity
  11. Original Paper
  12. Simple and efficient treatment of high-strength industrial waste water using commercial zero-valent iron
  13. Original Paper
  14. UV light-assisted mineralisation and biodetoxification of Ponceau S with hydroxyl and sulfate radicals
  15. Original Paper
  16. Measuring free ellagic acid: influence of extraction conditions on recovery by studying solubility and UV-Visible spectra
  17. Original Paper
  18. Effect of sample pre-treatment on isoflavones quantification in soybean
  19. Original Paper
  20. TG-DTA-FTIR analysis and isoconversional reaction profiles for thermal and thermo-oxidative degradation processes in black chokeberry (Aroniamelanocarpa)
  21. Original Paper
  22. Flow field in a downward diverging channel and its application
  23. Original Paper
  24. Use of dodecanoyl isothiocyanate as building block in synthesis of target benzothiazine, quinazoline, benzothiazole and thiourea derivatives
  25. Short Communication
  26. Solvent-free synthesis of 6-unsubstituted dihydropyrimidinones using 2-pyrrolidonium bisulphate as efficient catalyst
Heruntergeladen am 22.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/chempap-2016-0040/html
Button zum nach oben scrollen