Home Life Sciences Chemoenzymatic polycondensation of para-benzylamino phenol
Article
Licensed
Unlicensed Requires Authentication

Chemoenzymatic polycondensation of para-benzylamino phenol

  • Pinar Yildirim , Ersen Gokturk , Ersen Turac , Haci O Demir and Ertugrul Sahmetlioglu EMAIL logo
Published/Copyright: February 11, 2016
Become an author with De Gruyter Brill

para-Benzylamine substituted oligophenol was synthesized via enzymatic oxidative polycondensation of 4-(benzylamino)phenol (BAP). Polymerization involved only the phenolic moiety without oxidizing the sec-amine (benzylamine) group. Chemoselective polycondensation of BAP monomer using HRP enzyme yielded oligophenol with sec-amine functionality on the side-chain. Effects of various factors including solvent system, reaction pH and temperature on the polycondensation were studied. Optimum polymerization process with the highest yield (63 %) and molecular weight (Mn = 5000, degree of polymerization ≈ 25) was achieved using the EtOH/ buffer (pH 5.0; 1 : 1 vol. ratio) at 25 °C in 24 h under air. Characterization of the oligomer was accomplished by 1H NMR and 13C NMR, Fourier transform infrared spectroscopy (FT-IR), gel permeation chromatography (GPC), ultraviolet-visible spectroscopy (UV-Vis), cyclic voltammetry (CV) and thermogravimetric analysis (TGA). The polymerization process involved the elimination of hydrogen from BAP, and phenolic-OH end groups of the oligo(BAP), confirmed using 1H NMR and FT-IR analyses. The oligomer backbone possessed phenylene and oxyphenylene repeat units, and the resulting oligomer was highly soluble in common organic solvents such as acetone, CHCl3, 1,4-dioxane, N,N-dimethylformamide (DMF), tetrahydrofurane (THF) and dimethylsulfoxide (DMSO). Oligo(BAP) was thermally stable and exhibited 5 % and 50 % mass loss determined by thermogravimetric analysis at 247°C and 852°C, respectively.

Acknowledgements.

Ersen Gokturk would like to acknowledge the Turkish Ministry of National Education for his Ph.D. scholarship.

References

Cheraghi, B., Fakhari, A. R., Borhani, S., & Entezami, A. A. (2009). Chemical and electrochemical deposition of conducting polyaniline on lead. Journal of Electroanalytical Chemistry, 626, 116–122. DOI: 10.1016/j.jelechem.2008.11.011.10.1016/j.jelechem.2008.11.011Search in Google Scholar

Coates, J. (2000). Interpretation of infrared spectra, a practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 10815–10837). Chichester, UK: Wiley.Search in Google Scholar

Dordick, J. S., Marletta, M. A., & Klibanov, A. M. (1987). Polymerization of phenols catalyzed by peroxidase in nonaqueous media. Biotechnology and Bioengineering, 30, 31–36. DOI: 10.1002/bit.260300106.10.1002/bit.260300106Search in Google Scholar

Eker, B., Zagorevski, D., Zhu, G. G., Linhardt, R. J., & Dordick, J. S. (2009). Enzymatic polymerization of phenols in room temperature ionic liquids. Journal of Molecular Catalysis B: Enzymatic, 59, 177–184. DOI: 10.1016/j.molcatb.2009.02. 018.10.1016/j.molcatb.2009.02.018Search in Google Scholar

Ghoul, M., & Chebil, M. (2012) Enzymatic polymerization of phenolic compounds by oxidoreductases. Amsterdam, The Netherlands: Springer.10.1007/978-94-007-3919-2Search in Google Scholar

Goretzki, C., & Ritter, H. (1998). Enzymatic oxidative polymerization of aminochalcones by use of horseradish peroxidase. Macromolecular Chemistry and Physics, 199, 1019–1024. DOI: 10.1002/(SICI)1521-3935(19980601)199:6<1019::AID-MACP1019>3.0.œ;2-5.10.1002/(SICI)1521-3935(19980601)199:6<1019::AID-MACP1019>3.0.œ;2-5Search in Google Scholar

Ikeda, R., Sugihara, J., Uyama, H., & Kobayashi, S. (1998). Enzymatic oxidative polymerization of 4-hydroxybenzoic acid derivatives to poly(phenylene oxide)s. Polymer International, 47, 295–301. DOI: 10.1002/(SICI)1097-0126(199811) 47:3<295::AID-PI7>3.0.CO;2-W.10.1002/(SICI)1097-0126(199811)47:3<295::AID-PI7>3.0.CO;2-WSearch in Google Scholar

Kaya, İ., & Gül, M. (2004). Synthesis, characterization and thermal degradation of oligo-2-[(4-fluorophenyl) imino methylene] phenol and some of its oligomer-metal complexes. European Polymer Journal, 40, 2025–2032. DOI: 10.1016/j. eurpolymj.2004.05.023.10.1016/j.eurpolymj.2004.05.023Search in Google Scholar

Kobayashi, S., & Higashimura, H. (2003). Oxidative polymerization of phenols revisited. Progress in Polymer Science, 28, 1015–1048. DOI: 10.1016/s0079-6700(03)00014-5.10.1016/s0079-6700(03)00014-5Search in Google Scholar

Kumbul, A., Gokturk, E., Turac, E., & Sahmetlioglu, E. (2015). Enzymatic oxidative polymerization of para-imine functionalized phenol catalyzed by horseradish peroxidase. Polymers for Advanced Technologies, 26, 1123–1129. DOI: 10.1002/pat.3544.10.1002/pat.3544Search in Google Scholar

Kupriyanovich, Y. N., Sukhov, B. G., Medvedeva, S. A., Mikhaleva, A. I., Vakul’skaya, T. I., Myachina, G. F., & Trofimov, B. A. (2008). Peroxidase-catalysed synthesis of electroconductive polypyrrole. Mendeleev Communications, 18, 56–58. DOI: 10.1016/j.mencom.2008.01.021.10.1016/j.mencom.2008.01.021Search in Google Scholar

Liu, W., Bian, S. P., Li, L., Samuelson, L., Kumar, J., & Tripathy, S. (2000). Enzymatic synthesis of photoactive poly(4-phenylazophenol). Chemistry of Materials, 12, 1577–1584. DOI: 10.1021/cm000072p.10.1021/cm000072pSearch in Google Scholar

Mita, N., Tawaki, S. I., Uyama, H., & Kobayashi, S. (2002). Enzymatic oxidative polymerization of phenol in an aqueous solution in the presence of a catalytic amount of cyclodextrin. Macromolecular Bioscience, 2, 127–130. DOI: 10.1002/1616-5195(20020401)2:3<127::AID-MABI127>3.0.CO;2-4.10.1002/1616-5195(20020401)2:3<127::AID-MABI127>3.0.CO;2-4Search in Google Scholar

Moulay, S. (2009). Polymers with dihydroxy/dialkoxybenzene moieties. Comptes Rendus Chimie, 12, 577–601. DOI: 10. 1016/j.crci.2008.05.011.10.1016/j.crci.2008.05.011Search in Google Scholar

Nabid, M. R., & Entezami, A. A. (2003a). Enzymatic synthesis and characterization of a water-soluble, conducting poly(o-toluidine). European Polymer Journal, 39, 1169–1175. DOI: 10.1016/s0014-3057(02)00379-8.10.1016/s0014-3057(02)00379-8Search in Google Scholar

Nabid, M. R., & Entezami, A. A. (2003b). Synthesis of water-soluble and conducting poly(2-ethylaniline) by using horseradish peroxidase. Iranian Polymer Journal, 12, 401–406.Search in Google Scholar

Narayan, A. V., & Pushpa, A. (2012). Enzyme based processes for removal of phenol from waste water: Current status and future challenges. Journal of Environmental Research and Development, 7, 724–728.Search in Google Scholar

Pradeep, N. V., Anupama, A., & Hampannavar, U. S. (2012). Polymerization of phenol using free and immobilized horseradish peroxidase. Journal of Environment and Earth Science, 2(1), 31–36.Search in Google Scholar

Shan, J. N., Han, L. Y., Bai, F. L., & Cao, S. K. (2003). Enzymatic polymerization of aniline and phenol derivatives catalyzed by horseradish peroxidase in dioxane(II). Polymers for Advanced Technologies, 14, 330–336. DOI: 10.1002/pat.316.10.1002/pat.316Search in Google Scholar

Stuart, B. H. (2004). Infrared spectroscopy: Fundamentals and applications. Chichester, UK: Wiley. DOI: 10.1002/0470011149.10.1002/0470011149Search in Google Scholar

Tanaka, T., Takahashi, M., Hagino, H., Nudejima, S. I., Usui, H., Fujii, T., & Taniguchi, M. (2010). Enzymatic oxidative polymerization of methoxyphenols. Chemical Engineering Science, 65, 569–573. DOI: 10.1016/j.ces.2009.05.041.10.1016/j.ces.2009.05.041Search in Google Scholar

Tonami, H., Uyama, H., Kobayashi, S., Rettig, K., & Ritter, H. (1999). Chemoenzymatic synthesis of a poly(hydroquinone). Macromolecular Chemistry and Physics, 200, 1998–2002. DOI: 10.1002/(SICI)1521-3935(19990901)200:9<1998::AID-MACP1998>3.0.CO;2-6.10.1002/(SICI)1521-3935(19990901)200:9<1998::AID-MACP1998>3.0.CO;2-6Search in Google Scholar

Turac, E., Surme, Y., Sahmetlioglu, E., Varol, R., Narin, I., & Toppare, L. (2008). Synthesis and characterization of water-soluble oligosalicylaldehyde-sulfanilic acid and its Cu(II), Co(II), Pb(II) complexes. Journal of Applied Polymer Science, 110, 564–568. DOI: 10.1002/app.28650.10.1002/app.28650Search in Google Scholar

Uyama, H., Kurioka, H., Kaneko, I., & Kobayashi, S. (1994). Synthesis of a new family of phenol resin by enzymatic oxidative polymerization. Chemical Letters, 23, 423–426. DOI: 10.1246/cl.1994.423.10.1246/cl.1994.423Search in Google Scholar

Uyama, H., Kurioka, H., Sugihara, J., Komatsu, I., & Kobayashi, S. (1997). Oxidative polymerization of p-alkylphenols catalyzed by horseradish peroxidase. Journal of Polymer Science Part A: Polymer Chemistry, 35, 1453–1459. DOI: 10.1002/(SICI)1099-0518(199706)35:8<1453::AID-POLA14>3.0.CO;2-6.10.1002/(SICI)1099-0518(199706)35:8<1453::AID-POLA14>3.0.CO;2-6Search in Google Scholar

Uyama, H., Lohavisavapanich, C., Ikedia, R., & Kobayashi, S. (1998). Chemoselective polymerization of a phenol derivative having a methacryl group by peroxidase catalyst. Macromolecules, 31, 554–556. DOI: 10.1021/ma971510p.10.1021/ma971510pSearch in Google Scholar

Uyama, H., & Kobayashi, S. (2002). Enzyme-catalyzed polymerization to functional polymers. Journal of Molecular Catalysis B: Enzymatic, 19, 117–127. DOI: 10.1016/s1381-1177(02)00158-3.10.1016/s1381-1177(02)00158-3Search in Google Scholar

Vietch, N. C. (2004). Horseradish peroxidase: a modern view of a classic enzyme. Phytochemistry, 65, 249–259. DOI: 10.1016/j.phytochem.2003.10.022.10.1016/j.phytochem.2003.10.022Search in Google Scholar

Wagner, P., Aubert, P. H., Lutsen, L., & Vanderzande, D. (2002). Conjugated polymers based on new thienylene – PPV derivatives for solar cell applications. Electrochemistry Communications, 4, 912–916. DOI: 10.1016/s1388-2481(02)00487-3.10.1016/s1388-2481(02)00487-3Search in Google Scholar

Xu, J. X., & Wang, R. C. (2010). Selective alkylation of aminophenols. ARKIVOC, 2010, 293–299.10.3998/ark.5550190.0011.927Search in Google Scholar

Wuts, P. G. M., & Greene, T. W. (2006). Greene’s protective groups in organic synthesis (4th ed.). New York, NY, USA: Wiley. DOI: 10.1002/0470053488.10.1002/0470053488Search in Google Scholar

Zhang, L., Zhang, Y. D., Xue, Y. Y., Duan, H., & Cui, Y. C. (2013). Enzymatic synthesis of soluble phenol polymer in water using anionic surfactant as additive. Polymer International, 62, 1277–1282. DOI: 10.1002/pi.4411.10.1002/pi.4411Search in Google Scholar

Zheng, K., Zhang, L., Gao, Y. H., Wu, Y. F., Zhao, W. S., & Cui, Y. C. (2015). Enzymatic oxidative polymerization of pyrogallic acid for preparation of hindered phenol antioxidant. Journal of Applied Polymer Science, 132. DOI: 10.1002/app.41591. (in press)10.1002/app.41591Search in Google Scholar

Received: 2015-7-31
Revised: 2015-10-6
Accepted: 2015-10-7
Published Online: 2016-2-11
Published in Print: 2016-5-1

© 2015 Institute of Chemistry, Slovak Academy of Sciences

Articles in the same Issue

  1. Original Paper
  2. Preparation and characterisation of gelatine hydrogels predisposed to use as matrices for effective immobilisation of biocatalystst
  3. Original Paper
  4. Photocatalytic reduction of nitro aromatic compounds to amines using a nanosized highly active CdS photocatalyst under sunlight and blue LED irradiation
  5. Original Paper
  6. Synthesis of butyrate using a heterogeneous catalyst based on polyvinylpolypyrrolidone
  7. Original Paper
  8. Behaviour of selected pesticide residues in blackcurrants (Ribes nigrum) during technological processing monitored by liquid-chromatography tandem mass spectrometry
  9. Original Paper
  10. Influence of solvents and novel extraction methods on bioactive compounds and antioxidant capacity of Phyllanthus amarus
  11. Original Paper
  12. Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction
  13. Original Paper
  14. Innovative approach to treating waste waters by a membrane capacitive deionisation system
  15. Original Paper
  16. Liquid—liquid equilibria of ternary systems of 1-hexene/hexane and extraction solvents
  17. Original Paper
  18. Design of extractive distillation process with mixed entraineri‡
  19. Original Paper
  20. Kinetic study of non-reactive iron removal from iron-gall inks
  21. Original Paper
  22. Chemoenzymatic polycondensation of para-benzylamino phenol
  23. Original Paper
  24. Copper corrosion behaviour in acidic sulphate media in the presence of 5-methyl-lH-benzotriazole and 5-chloro-lH-benzotriazole
  25. Original Paper
  26. Synthesis of new 5-bromo derivatives of indole and spiroindole phytoalexins
  27. Original Paper
  28. Design, synthesis and anti-mycobacterial evaluation of some new iV-phenylpyrazine-2-carboxamides
  29. Short Communication
  30. Convenient amidation of carboxyl group of carboxyphenylboronic acids
  31. Short Communication
  32. A novel intramolecular reversible reaction between the hydroxyl group and isobutenylene chain in a cyclophane-type macrocycle
  33. Erratum
  34. Erratum to “Adriana Bakalova, Boryana Nikolova-Mladenova, Rossen Buyukliev, Emiliya Cherneva, Georgi Momekov, Darvin Ivanov: Synthesis, DFT calculations and characterisation of new mixed Pt(II) complexes with 3-thiolanespiro-5′-hydantoin and 4-thio-1H-tetrahydropyranspiro-5′-hydantoin”, Chemical Papers 70 (1) 93–100 (2016)*
  35. Erratum
  36. Erratum to “Martyna Rzelewska, Monika Baczyńska, Magdalena Regel-Rosocka, Maciej Wiśniewski: Trihexyl(tetradecyl)phosphonium bromide as extractant for Rh(III), Ru(III) and Pt(IV) from chloride solutions”, Chemical Papers 70 (4) 454–460 (2016)*
Downloaded on 28.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/chempap-2015-0242/html
Scroll to top button