Startseite Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon

Paper presented at the “2nd International Conference on Materials Science and Nanotechnology 2018, MSNANO-18”, 22–23 February 2018, Faisalabad, Pakistan
  • H M Noor ul Huda Khan Asghar , Muhammad Shahzad Shifa , Zaheer Abbas Gilani , Adnan Ali , Khalid Mahmood , Jalil ur Rehman , Muhammad Nuaman Usmani , Peng Wang , Shiqiang Qin Shuang Shi , Dachuan Jiang und Yi Tan
Veröffentlicht/Copyright: 17. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Electron beam melting was utilized to investigate the behavior of carbon flow by melting 100 g of multi-crystalline silicon in an electron beam furnace for five minutes. Carbon and nitrogen are the constituent impurities in contaminated Si samples with an average weight of 13 % and 9, respectively. The electron beam melting experiment caused redistribution of the impurities along the periphery and bottom of the Si sample with a pie-shaped structure. Investigations through scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed that the impurities were silicon nitride and silicon carbide. It was determined that Si3N4 has a rod-shaped microstructure, whereas SiC has a granular morphology. By segregating the impurities redistributed through this technique, pure Si was obtained in the remaining sample.


Correspondence address, Dr. Muhammad Shahzad Shifa, Nanao-ferrites Synthesis & Texture Analysis Lab, Department of Physics, Government College University, Faisalabad, Pakistan, Tell: +92 419201372, E-mail:

References

[1] X.F.Qi, Q.H.Yu, W.H.Zhao, X.Q.Liang, J.Zhang, L.J.Liu: Sol. Sol. Energy Mater. Sol. Cells130 (2014) 118123. 10.1016/j.solmat.2014.06.042Suche in Google Scholar

[2] M.Stuckelberger, Y.Riesen, M.Despeisse, J.W.Schuttauf, F.J.Haug, C.Ballif: Appl. Phys.116 (2014) 094503. 10.1063/1.4894457Suche in Google Scholar

[3] S.Q.Xiao, S.Y.Xu: Crit. Rev. Solid State Mater. Sci.39 (2014) 277317. 10.1080/10408436.2013.834245Suche in Google Scholar

[4] F.Wolny, A.Krause, G.Fischer: Proceedings of the 4th International Conference on Crystalline Silicon Photovoltaics (Siliconpv 2014),55 (2014) 618623. 10.1016/j.egypro.2014.08.034Suche in Google Scholar

[5] T.Matsui, M.Kondo: Sol. Energy Mater. Sol. Cells119 (2013) 156162. 10.1016/j.solmat.2013.05.056Suche in Google Scholar

[6] H.M.N.U.K.Asghar, Z.A.Gilani, M.S.Awan, I.Ahmad, Y.Tan: Arab J. Sci. Eng.40 (2015) 263268. 10.1007/s13369-014-1483-ySuche in Google Scholar

[7] J.Safarian, G.Tranell, M.Tangstad: Energy Procedia20 (2012) 8897. 10.1016/j.egypro.2012.03.011Suche in Google Scholar

[8] N.Yuge, M.Abe, K.Hanazawa, H.Baba, N.Nakamura, Y.Kato, Y.Sakaguchi, S.Hiwasa, F.Aratani: Prog. Photovoltaics Res. Appl.9 (2001), 203209. 10.1002/pip.372Suche in Google Scholar

[9] Y.Kato, K.Hanazawa, H.Baba, N.Nakamura, N.Yuge, Y.Sakaguchi, S.Hiwasa, F.Aratani: Tetsu to Hagane/J. Iron Steel Inst. Jpn, 86 (2000), 717724. 10.2355/tetsutohagane1955.86.11_717Suche in Google Scholar

[10] T.Shimpo, T.Yoshikawa, K.Morita: Metall. Mater. Trans. B35 (2004) 277284. 10.1007/s11663-004-0029-1Suche in Google Scholar

[11] N.Yuge, H.Baba, Y.Sakaguchi, K.Nishikawa, H.Terashima, F.Aratani: Sol. Energy Mater. Sol. Cells,34 (1994) 243250. 10.1016/0927-0248(94)90046-9Suche in Google Scholar

[12] N.Yuge, H.Baba, Y.Sakaguchi, K.Nishikawa, H.Terashima, F.Aratani: Adv. Mater.93 (1994), 597600. 10.1016/B978-1-4832-8381-4.50143-8Suche in Google Scholar

[13] H.M.N.U.K.Asghar, Y.Tan, S.Shi, D.C.Jiang, S.Q.Qin, J.Liao, S.T.Wen, W.Dong, Y.Liu: Appl. Phys. A115 (2014) 753757. 10.1007/s00339-014-8367-6Suche in Google Scholar

Received: 2018-03-24
Accepted: 2018-09-19
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
  5. A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
  6. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
  7. Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
  8. Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
  9. Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
  10. Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
  11. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
  12. Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
  13. Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
  14. Short Communications
  15. Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
  16. Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
  17. DGM News
  18. DGM News
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111736/html
Button zum nach oben scrollen