Startseite Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence

  • Qiang Su , HongQuan Liu , Ruxue Chen , Ying Song , Lan Ma , YiJie Gu , HongZhi Cui und Hongchao Wang
Veröffentlicht/Copyright: 17. Mai 2019
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In recent years, topological crystalline insulators have attracted increased attention due to practical demands of tunable electronic, spin electronic and thermoelectric devices. As an important topological crystalline insulator, mono-crystalline SnTe octahedra with {111} dominated surfaces, were successfully synthesized on a large scale via a surfactant-free hydrothermal synthesis route in this work. Important controlling factors for phase and morphology, i.e. reaction temperature, reactant concentration and stoichiometric ratio, are discussed in detail. The results indicated that high temperature is favorable for forming pure phase, and excessive Sn suppresses the appearance of SnTe with octahedral morphology. Lower reactant concentration is beneficial to preparing uniform SnTe octahedra via the selective growth mechanism. Crystallographic characteristics of the SnTe octahedra were investigated using focused ion beam, electron backscattered diffraction and transmission electron microscopy analysis. The hexagonal-like micro-plate (cut from an octahedron) was confirmed as mono-crystalline by the corresponding three Euler angle maps, the Kikuchi diffraction pattern and selected-area diffraction. It can be further deduced from the multiple experimental results that surfaces of octahedral SnTe are dominated by {111} crystallographic planes and the average size is 1–3 μm. Controllable mono-crystalline octahedra would effectively promote the development of topological crystalline insulators and their micro devices.


Correspondence address, H.Q. Liu, College of Materials Science and Engineering, Shandong University of Science and Technology, Qian Wan Gang street 579, Qingdao, 266590, P.R. China, email: ; , Tel: +86-0532-86057123, Fax: +86-0532-86057123

References

[1] P.Sessi, D. DiSante, A.Szczerbakow, F.Glott, S.Wilfert: Science354 (2016) 1269 – 1273. 27940869; 10.1126/science.aah6233Suche in Google Scholar PubMed

[2] K.Chang, J.Liu, H.Lin, N.Wang, K.Zhao, A.Zhang, F.Jin: Science353 (2016) 274 – 278. 27418506; 10.1126/science.aad8609Suche in Google Scholar PubMed

[3] J.Shen, Y.Xie, J.J.Cha: Nano Lett.15 (2015) 3827 – 3832. 10.1021/acs.nanolett.5b00576Suche in Google Scholar PubMed

[4] L.D.Zhao, X.Zhang, H.Wu: J. Am. Chem. Soc138 (2016) 2366 – 2373. 10.1021/jacs.5b13276Suche in Google Scholar PubMed

[5] G.A.Fiete: Nat. Mater.11 (2012) 1003 – 1004. 23175043; 10.1038/nmat3473Suche in Google Scholar PubMed

[6] T.H.Hsieh, H.Lin, J.Liu, W.Duan, A.Bansil, L.Fu: Nat. Commun3 (2012) 982(1 – 6). 22864575; 10.1038/ncomms1969Suche in Google Scholar PubMed

[7] M.Safdar, Q.Wang, M.Mirza, J.He: Cryst. Growth. Des.14 (2014) 2502 – 2509. 10.1021/cg5002122Suche in Google Scholar

[8] S.Safaei, P.Kacman, R.Buczko: Phys. Rev B88 (2013) 045305. 10.1103/PhysRevB.88.045305Suche in Google Scholar

[9] J.Liu, W.Duan, L.Fu: Phys. Rev B88 (2013) 241303(R). 10.1103/PhysRevB.88.241303Suche in Google Scholar

[10] Y.Tanaka, Z.Ren, T.Sato, K.Nakayama1, S.Souma, T.Takahashi, K.Segawa, Y.Ando: Nat. Phys.8 (2012) 800 – 803. 10.1038/NPHYS2442Suche in Google Scholar

[11] M.K.Wolfgang, H.S.Jong-Soo, L.Schwinghammer: J. Am. Chem. Soc129 (2007) 11354 – 11355. 17722931; 10.1021/ja074481zSuche in Google Scholar PubMed

[12] J.Shen, A.Y.Jung, F.S.Disa: Nano Lett.14 (2014) 4183 – 4188. 10.1021/nl501953sSuche in Google Scholar PubMed

[13] Z.Li, Y.Chen, J.F.Li: Nano Energy28 (2016) 78 – 86. 10.1016/j.nanoen.2016.08.008Suche in Google Scholar

[14] Z.Y.Chu, H.Q.Liu, C.H.Yuan, Y.J.Gu: Mater. Chem. Phys.199 (2017) 464 – 470. j.matchemphys.2017.07.018. 10.1016/Suche in Google Scholar

[15] H.Q.Liu, T.T.Zheng, Q.Y.Guo, Y.J.Gu: Rare Met. Mater. Eng.41 (2012) 748752. 1002-185X(2012)04-0748-05Suche in Google Scholar

[16] N.D.Bronstein, L.M.Wheeler, N.C.Anderson: Chem. Mater.30 (2018) 3131 – 3140. acs.chemmater.8b01358. 10.1021/Suche in Google Scholar

[17] H.Q.Liu, Q.Su, H.Z.Cui, Y.J.Gu: J. Appl. Electrochem47 (2017) 691 – 698. DOI 10.1007/s10800–017–1070–5. 10.1007/s10800-017-1070-5Suche in Google Scholar

[18] K.Kadel, L.Kumari, X.W.Wang: Nanoscale Res. Lett.9 (2014) 227 (1–10). 1556–276X-9–227. 24872808; 10.1186/Suche in Google Scholar

[19] H.Song, S.J.Huang, L.Fu: Phys. Rev. X7 (2017) 011020. 10.1103/PhysRevX.7.011020Suche in Google Scholar

[20] Z.W.Srokol, G.Rothenberg: Top. Catal.53 (2010) 1258 – 1263. 10.1007/s11244-010-9578-5Suche in Google Scholar

[21] D.L.Xia, Y.F.Li, H.R.Gao: Nanosci. Nanotechnol. Lett.9 (2017) 1531 – 1538. https://doi.org/10.1166/nnl.2017.2498.Suche in Google Scholar

[22] T.Mokari, M.J.Zhang, P.D.Yang: J. Am. Chem. SOC.129 (2007) 9864 – 9865. a074145i. 17658815; 10.1021/jSuche in Google Scholar

[23] Z.Li, S.Shao, N.Li: Nano Lett.13 (2013) 5443 – 5448. 24138562; 10.1021/nl4030193Suche in Google Scholar PubMed

[24] Y.G.Yan, L.X.Zhou, Y.Zhang: Cryst. Growth Des.8 (2008) 3285 – 3289. 10.1021/cg800105hSuche in Google Scholar

[25] W.Niu, S.Zheng, D.Wang: J. Am. Chem. Soc.131 (2009) 697 – 703. 10.1021/ja804115rSuche in Google Scholar PubMed

Received: 2018-08-15
Accepted: 2018-12-06
Published Online: 2019-05-17
Published in Print: 2019-05-15

© 2019, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Original Contributions
  4. Relationship between the variation in transformation temperatures, resistivity and dislocation density during thermal cycling of Ni50Ti50 shape memory alloy
  5. A critical analysis of the X-ray diffraction intensities in concentrated multicomponent alloys
  6. Thermodynamic investigations in the Al–Fe system: Thermodynamic modeling using CALPHAD
  7. Investigation of semi-solid microstructures of an A356 alloy containing rare-earth Gd during isothermal heat treatment
  8. Effects of double-ageing on the mechanical properties and microstructural evolution in the 1460 alloy
  9. Mechanical properties characterisation of AlSi10Mg parts produced by laser powder bed fusion additive manufacturing
  10. Tribological performance and corrosion behavior of aluminum alloy protected by Cr-doped diamond-like carbon thin film
  11. Effect of sintering temperature on the densification and optical properties of spark plasma sintered ZnSe ceramics
  12. Mono-crystalline SnTe with micro-octahedroncharacteristic: One-pot facile synthesis and comprehensive crystallographic evidence
  13. Finite element simulation of the residual stress in Ti6Al4V titanium alloy laser welded joint
  14. Short Communications
  15. Mechanism of the effect of electron beam melting on the distribution of oxygen, nitrogen and carbon in silicon
  16. Synthesis and study of structural, morphological, optical and toxicological properties of ferromagnetic cobalt oxide nanoparticles in liver carcinoma cell line
  17. DGM News
  18. DGM News
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111756/html
Button zum nach oben scrollen