Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
-
Behzad Sadeghi
, Morteza Shamanian , Fakhreddin Ashrafizadeh , Pasquale Cavaliere und Danie le Valerini
Abstract
Spark plasma sintering has been recognized in the recent past as a very useful tool capable of producing materials with high strength and low porosity when compared to the traditional powder metallurgy technologies. In addition, the possibility of producing metal-matrix composites with enhanced mechanical and wear properties has been demonstrated. Obviously, the final properties of spark plasma sintered composites depend on the reinforcement type, size and percentage. The present paper analyzes the possibility of producing spark plasma sintered aluminum-based composites with various types and sizes of reinforcement (Al2O3 nanosized and microsized particles blended with aluminum in different percentages). A strong variation in the microstructural behavior, in mechanical properties and in deformation mode has been observed by varying the type, percentage and combination of reinforcements in the aluminum matrix. The material evolution was deeply analyzed through nanoindentation, X-ray diffraction and scanning electron microscopy.
References
[1] K.Dash, D.Chaira, B.C.Ray: Mater. Res. Bull.48 (2013) 2535. 10.1016/j.materresbull.2013.03.014Suche in Google Scholar
[2] E.Ghasali, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.655 (2016) 93. 10.1016/j.jallcom.2015.09.024Suche in Google Scholar
[3] E.Ghasali, A.Pakseresht, A.Rahbari, H.Eslami-shahed, M.Alizadeh, T.Ebadzadeh: J. Alloys Compd.666 (2016) 366. 10.1016/j.jallcom.2016.01.118Suche in Google Scholar
[4] C.Wolff, S.Mercier, H.Couque, A.Molinari: Mech. Mater.49 (2012) 72. 10.1016/j.mechmat.2011.12.002Suche in Google Scholar
[5] Z-F.Liu, Z-H.Zhang, J-F.Lu, A.V.Korznikov, E.Korznikova, F-C.Wang: Mater. Des.64 (2014) 625. 10.1016/j.matdes.2014.08.030Suche in Google Scholar
[6] Z.A.Munir, V.D.Quach: J. Am. Ceram. Soc.94 (2011) 1. 10.1111/j.1551-2916.2010.04210.xSuche in Google Scholar
[7] K.L.Firestein, S.Corthay, A.E.Steinman, A.T.Matveev, A.M.Kovalskii, I.V.Sukhorukova, D.Golberg, D.V.Shtansky: Mater. Sci. Eng. A681 (2017) 1. 10.1016/j.msea.2016.11.011Suche in Google Scholar
[8] K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.Rojas Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Suche in Google Scholar
[9] J.Zhanga, H.Shi, M.Cai, L.Liu, P.Zhai: Mater. Sci. Eng. A527 (2009) 218. 10.1016/j.msea.2009.08.067Suche in Google Scholar
[10] G.A.Sweet, M.Brochu, R.L.HexemerJr., I.W.Donaldson, D.P.Bishop: Mater. Sci. Eng. A648 (2015) 123. 10.1016/j.msea.2015.09.027Suche in Google Scholar
[11] D.Garbiec, M.Jurczyk, N.Levintant-Zayonts, T.Mościcki: Arch. Civ. Mech. Eng.15 (2015) 933. 10.1016/j.acme.2015.02.004Suche in Google Scholar
[12] S.C.Tjong: Adv. Eng. Mater.9 (2007) 639. 10.1002/adem.200700106Suche in Google Scholar
[13] O.Guillon, J.Gonzalez-Julian, B.Dargatz, T.Kessel, G.Schierning, J.Räthel, M.Herrmann: Adv. Eng. Mater.16 (2014) 830. 10.1002/adem.201300409Suche in Google Scholar
[14] N.Saheb, Z.Iqbal, A.Khalil, A.S.Hakeem, N.Al Aqeeli, T.Laoui, A.Al-Qutub, R.Kirchner: J. Nanomater.2012 (2012) 18. 10.1155/2012/983470Suche in Google Scholar
[15] G.Xie, O.Ohashi, M.Song, K.Furuya, T.Noda: Metall. Mater. Trans.A34 (2003) 699. 10.1007/s11661-003-0024-1Suche in Google Scholar
[16] M.Tokita: Nanotech. Russia10 (2015) 261. 10.1134/S1995078015020202Suche in Google Scholar
[17] D.M.Hulbert, A.Anders, J.Andersson, E.J.Lavernia, A.K.Mukherjee: Scr. Mater.60 (2009) 835. 10.1016/j.scriptamat.2008.12.059Suche in Google Scholar
[18] D.M.Hulbert, A.Anders, D.V.Dudina, J.Andersson, D.Jiang, C.Unuvar, U.Anselmi-Tamburini, E.J.Lavernia, A.K.Mukherjee: J. Appl. Phys.104 (2008) 033305. 10.1063/1.2963701Suche in Google Scholar
[19] S.Rudinsky, J.M.Aguirre, G.Sweet, J.Milligan, D.P.Bishop, M.Brochu: Mater. Sci. Eng.A621 (2015) 18. 10.1016/j.msea.2014.10.056Suche in Google Scholar
[20] N.K.Babu, K.Kallip, M.Leparoux, K.A.AlOgab, X.Maeder, Y.A.R.Dasilva: Mater. Des.95 (2016) 534. 10.1016/j.matdes.2016.01.138Suche in Google Scholar
[21] M.O.Durowoju, E.R.Sadiku, S.Diouf, M.B.Shongwe, P.A.Olubambi: Powder Technol.284 (2015) 504. 10.1016/j.powtec.2015.07.027Suche in Google Scholar
[22] S.Diouf, A.Molinari: Powder Technol.221 (2012) 220. 10.1016/j.powtec.2012.01.005Suche in Google Scholar
[23] S.Devaraj, S.Sankaran, R.Kumar: Acta Metall. Sin.26 (2013) 761. 10.1007/s40195-013-0159-zSuche in Google Scholar
[24] S.Decker, S.Martin, L.Krüger: Metall. Mater. Trans. A47 (2016) 170. 10.1007/s11661-015-2861-0Suche in Google Scholar
[25] D.Hitchcock, R.Livingston, D.Liebenberg: J. Appl. Phys.117 (2015) 174505. 10.1063/1.4919814Suche in Google Scholar
[26] B.Kieback: (2011) A review of spark plasma sintering. Proceedings of the Hagen Symposium (Hagen, Germany).Suche in Google Scholar
[27] J.Garay: Annu. Rev. Mater. Res.40 (2010) 445. 10.1146/annurev-matsci-070909-104433Suche in Google Scholar
[28] M.T.Khorshid, S.J.Jahromi, M.Moshksar: Mater. Des.31 (2010) 3880. 10.1016/j.matdes.2010.02.047Suche in Google Scholar
[29] E.A.Olevsky, L.Froyen: J. Amer. Ceram. Soc.92 (2009) S122. 10.1111/j.1551-2916.2008.02705.xSuche in Google Scholar
[30] F.Ostovan, K.A.Matori, M.Toozandehjani, A.Oskoueian, H.M.Yusoff, R.Yunus, A.H.M.Ariff, H.J.Quah, W.F.Lim: Mater. Chem. Phys.166 (2015) 160. 10.1016/j.matchemphys.2015.09.041Suche in Google Scholar
[31] C.Leon, G.Rodriguez-Ortiz, E.Aguilar-Reyes: Mater. Sci. Eng. A526 (2009) 106. 10.1016/j.msea.2009.07.002Suche in Google Scholar
[32] G.Pharr, A.Bolshakov: J. Mater. Res.17 (2002) 2660. 10.1557/JMR.2002.0386Suche in Google Scholar
[33] J.Luo, R.Stevens: Ceram. Int.25 (1999) 281. 10.1016/S0272-8842(98)00037-6Suche in Google Scholar
[34] J.Pelleg: (2012) Mechanical properties of materials. Springer Science & Business Media. 10.1007/978-94-007-4342-7Suche in Google Scholar
[35] S.C.Tjong: Processing and Deformation Characteristics of Metals Reinforced with Ceramic Nanoparticles. In: Nanocrystalline Materials: Their Synthesis-Structure-Property Relationships and Applications (2013) pp. 269–304. 10.1016/B978-0-12-407796-6.00008-7Suche in Google Scholar
[36] Y.Hirata, H.Fujita, T.Shimonosono: Ceram. Int.43 (2017) 1895. 10.1016/j.ceramint.2016.10.149Suche in Google Scholar
[37] K.Deng, J.Shi, C.Wang, X.Wang, Y.Wu, K.Nie, K.Wu: Composites Part A43 (2012) 1280. 10.1016/j.compositesa.2012.01.004Suche in Google Scholar
© 2018, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News