Home Microstructural effects of isothermal aging on a doped SAC solder alloy
Article
Licensed
Unlicensed Requires Authentication

Microstructural effects of isothermal aging on a doped SAC solder alloy

  • Lahouari Benabou , Laurent Vivet , Quang Bang Tao and Ngoc Hai Tran
Published/Copyright: December 18, 2017
Become an author with De Gruyter Brill

Abstract

An Sn–Ag–Cu based solder alloy, including Ni, Bi and Sb additives, is investigated in this study under isothermal aging conditions. Shear creep tests are conducted on different aged solder joints with copper substrate, giving the creep resistance evolution with aging time. Microscopy analyses reveal the limited growth of the Cu-rich intermetallic layer due to the Ni content and allow for determination of the time-dependent growth of the Sn-rich intermetallic layer. The aged specimens also exhibit a partial dynamically recrystallized microstructure after creep deformation and a brittle-to-ductile fracture transition is found with occurrence of intergranular cracking in the joint.


*Correspondence address, Dr. Lahouari Benabou, Laboratoire d'Ingénierie des Systèmes de Versailles, Université de Versailles Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, Versailles 78035, France, Tel.: +33-139254212, E-mail:

References

[1] G.Y.Li, B.L.Chen, X.Q.Shi, S.C.K.Wong, Z.F.Wang: Thin Solid Films504 (2006) 421. 10.1016/j.tsf.2005.09.060Search in Google Scholar

[2] A.E.Hammad: Mater. Des.50 (2013) 108. 10.1016/j.matdes.2013.03.010Search in Google Scholar

[3] M.H.Mahdavifard, M.F.M.Sabri, D.A.Shnawah, S.M.Said, I.A.Badruddin, S.Rozali: Microelectron. Reliab.55 (2015) 1886. 10.1016/j.microrel.2015.06.134Search in Google Scholar

[4] Q.B.Tao, L.Benabou, V.N.Le, H.Hwang, D.B.Luu: J. Alloys Compd.694 (2017) 892. 10.1016/j.jallcom.2016.10.025Search in Google Scholar

[5] T.Laurila, V.Vuorinen, J.K.Kivilahti: Mater. Sci. Eng.R49 (2005) 1. 10.1016/j.mser.2005.03.001Search in Google Scholar

[6] S.Kumar, C.A.Handwerker, A.D.Mysore: J. Phase Equilib. Diff.32 (2011) 309. 10.1007/s11669-011-9907-9Search in Google Scholar

[7] Q.B.Tao, L.Benabou, L.Vivet, K.L.Tan, J.M.Morelle, V.N.Le, F.B.Ouezdou: P. I. Mech. Eng. C-J. Mech. (2016). 10.1177/0954406216654728Search in Google Scholar

[8] W.S.Rasband: Image J, U. S. National Institutes of Health, Bethesda, Maryland, USA.Search in Google Scholar

[9] T.An, F.Qin: Microelectron. Reliab.54 (2014) 932. 10.1016/j.microrel.2014.01.008Search in Google Scholar

[10] V.Vuorinen, T.Laurila, T.Mattila, E.Heikinheimo, J.K.Kivilahti: J. Electron. Mater.36 (2007) 1355. 10.1007/s11664-007-0251-0Search in Google Scholar

[11] P.Kumar, Z.Huang, I.Dutta, R.Sidhu, M.Renavikar, R.Mahajan: J. Electron. Mater.41 (2012) 10.1007/s11664-011-1806-7Search in Google Scholar

[12] Y.Yang, H.Lu, C.Yu, Y.Li: Microelectron. Reliab.51 (2011) 2314. 10.1016/j.microrel.2011.06.026Search in Google Scholar

Received: 2017-04-29
Accepted: 2017-08-09
Published Online: 2017-12-18
Published in Print: 2018-01-09

© 2018, Carl Hanser Verlag, München

Downloaded on 3.11.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.111578/html
Scroll to top button