Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
-
Nelson Heriberto Almeida Camargo
Abstract
A hydroxyapatite and tricalcium phosphate nanocomposite containing 5% silica was developed for dental applications. The biomaterial was prepared by one-step synthesis via the wet route. The resulting dry material consisted of hydrated calcium phosphate agglomerates with sizes of up to 200 μm. The presence of silica was found to lower the phase transformation temperature of the calcium phosphates and increase the open porosity of the biomaterial compared to that of hydroxyapatite. The hydrated calcium phosphate transformed into hydroxyapatite (HA) and beta tricalcium phosphate (TCP) at approximately 682 °C. After 2 h of calcination at 900 °C, the volume ratios of HA and TCP in the nanocomposite were 84 and 16%, respectively. The open porosity in the triphasic nanocomposite and in the HA was 46.35% and 41.52%, respectively, after 3 h of sintering at 1 100 °C. Samples of grade 2 titanium were sandpapered and etched with an acid solution of HCl/H2SO4 prior to deposition of the calcined nanocomposite. The particles were deposited homogeneously and reduced the contact angle of the titanium surface.
References
[1] R.Z.Legeros: Clin. Orthop. Relat. Res.395 (2002) 81. 10.1097/00003086-200202000-00009Search in Google Scholar PubMed
[2] J.D.Keith-jr, P.Petrungaro, J.A.Leonetti: Int. J. Periodontics Restorative Dent.26 (2006) 321. 10.11607/prd.00.0702Search in Google Scholar
[3] N.H.A.Camargo, S.A.de Lima, E.Gemelli: Amer. J. Biomed. Eng.2 (2012) 41. 10.5923/j.ajbe.20120202.08Search in Google Scholar
[4] N.H.A.Camargo, S.A.de Lima, J.C.P.Souza, J.F.de Aguiar, E.Gemelli, M.M.Meier: Key Eng. Mater.398 (2009) 619. 10.4028/www.scientific.net/KEM.396-398.619Search in Google Scholar
[5] N.Levandowski-jr: MSc dissertation, Biocerâmicas nanoestruturadas para aumento ósseo guiado: um estudo comparativo in vivo, Santo Amaro University, Brazil (2009).Search in Google Scholar
[6] H.Oonishi, H.Ohashi, H.Oonishi Jr, S.C.Kim: Clin. Orthop. Relat. Res.466 (2008) 373. 10.1007/s11999-007-0057-7Search in Google Scholar PubMed PubMed Central
[7] L.Cheng, F.Ye, R.Yang, X.Lu, Y.Shi, L.Li, H.Fan, H.Bu: Acta Biomater.6 (2010) 1569. PMid:19896564 10.1016/j.actbio.2009.10.050Search in Google Scholar PubMed
[8] R.Z.LeGeros, S.Lin, R.Rohanizadeh, D.Mijares, J.P.LeGeros: J. Mater. Sci. Mater. Med.14 (2003) 201. PMid:15348465 10.1023/A:1022872421333Search in Google Scholar
[9] B.Flautre, M.Descamps, C.Delecourt, M.Blary, P.Hardouin: J. Mater. Sci. Mater. Med12 (2001) 679. PMid:15348237 10.1023/A:1011256107282Search in Google Scholar
[10] A.J.Mieszawska, N.Fourligas, I.Georgakoudi, N.M.Ouhib, D.J.Belton, C.C.Perry, D.L.Kaplan: Biomaterials31 (2010) 8902. PMid:20817293 10.1016/j.biomaterials.2010.07.109Search in Google Scholar PubMed PubMed Central
[11] S.Heinemann, C.Heinemann, S.Wenisch, V.Alt, H.Worch, T.Hanke: Acta Biomater.9 (2013) 4878. 10.1016/j.actbio.2012.10.010Search in Google Scholar PubMed
[12] D.Arcos, M.Vallet-Regí: Acta Biomater.6 (2010) 2874. PMid:20152946 10.1016/j.actbio.2010.02.012Search in Google Scholar
[13] J.C.P.de Souza: MSc dissertation, Estudo e caracterização de pós nanoestruturados de fosfato de cálcio e nanocompósitos de fosfato de cálcio/alumina sol-gel para aplicações biomédicas, State University of Santa Catarina, Brazil (2009).Search in Google Scholar
[14] V.C.Mendes, R.Moineddin, J.E.Davies: Biomaterials28 (2007) 4748. PMid:17697709 10.1016/j.biomaterials.2007.07.020Search in Google Scholar
[15] V.C.Mendes, R.Moineddin, J.E.Davies: J. Biomed. Mater. Res. Part A12 (2008) 577. 10.1002/jbm.a.32126Search in Google Scholar
[16] N.Mostafa: Mater. Chem. Phys.94 (2005) 333. 10.1016/j.matchemphys.2005.05.011Search in Google Scholar
[17] E.C.M.Pennings, W.Greliner: J. Amer. Cer. Soc.72 (1989) 1268. 10.1111/j.1151-2916.1989.tb09724.xSearch in Google Scholar
[18] A.F.Stalder, G.Kulik, D.Sage, L.Barbieri, P.Hoffmann: Coll. Surf. A: Physicochem. Eng. Aspects286 (2006) 92. 10.1016/j.colsurfa.2006.03.008Search in Google Scholar
[19] R.B.M.Santos: MSc dissertation, Síntese e caracterização de pós nanoestruturados de fosfatos de cálcio e nanocompósitos hidroxiapatita/sílica-gel, State University of Santa Catarina, Brazil (2009).Search in Google Scholar
[20] O.J.Bellini: MSc dissertation, Síntese e caracterização de uma matriz óssea de fosfato de cálcio e nanocompósitos fosfato de cálcio/SiO2n para substituição e regeneração óssea, State University of Santa Catarina, Brazil (2007).Search in Google Scholar
[21] J.B.Baldo, W.N.dos Santos: Cerâmica48 (2002) 172. 10.1590/S0366-69132002000300011Search in Google Scholar
[22] GMLDalmônico: MSc dissertation, Síntese e caracterização de fosfato de cálcio e de hidroxiapatita: elaboração de composições bifásicas HA/TCP-β para aplicações biomédicas. Dissertação de mestrado em Ciência e Engenharia de Materiais, State University of Santa Catarina, Brazil (2011).Search in Google Scholar
[23] D.M.P.de Oliveira: MSc dissertation, Síntese e caracterização de pós de fosfato tricálcico-β e de hidroxiapatita: elaboração de bifásicos HA/TCP-β para aplicações como substituto ósseo, State University of Santa Catarina, Brazil (2010).Search in Google Scholar
[24] S.V.Dorozhkin: Acta Biomater.8 (2012) 963. PMid:21945826 10.1016/j.actbio.2011.09.003Search in Google Scholar
[25] K.Kurashina, H.Kurita, Q.Wu, A.Ohtsuka, H.Kobayashi: Biomaterials23 (2002) 407. 10.1016/S0142-9612(01)00119-3Search in Google Scholar
[26] H.R.R.Ramay, M.Zhang: Biomaterials25 (2004) 5171. PMid:15109841 10.1016/j.biomaterials.2003.12.023Search in Google Scholar PubMed
[27] G.Daculsi: Biomaterials19 (1998) 1473. 10.1016/S0142-9612(98)00061-1Search in Google Scholar
[28] S.Ghanaati, M.Barbeck, C.Orth, I.Willershausen, B.W.Thimm, C.Hoffmann, A.Rasic, R.A.Sader, R.E.Unger, F.Peters, C.J.Kirkpatrick: Acta Biomater.6 (2010) 4476. PMid:20624495 10.1016/j.actbio.2010.07.006Search in Google Scholar PubMed
[29] T.L.Livingston, S.Gordon, M.Archambault, S.Kadiyala, K.Mcintosh, A.Smith, S.J.Peter: J. Mater. Sci. Mater. Med.14 (2003) 211. PMid:15348466 10.1023/A:1022824505404Search in Google Scholar
[30] L.S.A.F.Oliveira, C.S.Oliveira, A.P.L.Machado, F.P.Rosa: Revista de Ciências Médicas e Biológicas, 9 (2010) 21. 10.9771/cmbio.v9i1.4730Search in Google Scholar
[31] T.S.S.Premvixtor, K.Sampath: J. Mater. Sci. Mater. Med.19 (2008) 283. PMid:17597367 10.1007/s10856-006-0044-7Search in Google Scholar PubMed
[32] K.Sungtae, U.-W.Jung, Y.-K.Lee, S.H.Choi: Inter. J. Oral Maxillofac. Implants26 (2011) 265. 10.1016/S0022-3913Search in Google Scholar
[33] A.C.Garrido, S.E.Lobo, F.M.Turbio, R.Z.Legeros: Inter. J. Biomaterials2011 (2011) 1. PMid:21961004 10.1155/2011/129727Search in Google Scholar PubMed PubMed Central
[34] H.R.R.Ramay, M.Zhang: Biomaterials25 (2004) 5171. PMid:15109841 10.1116/1.4870781Search in Google Scholar PubMed
[35] T.J.Webster: Amer. Cer. Soc. Bull.82 (2003) 23. 10.1039/c4tb00344fSearch in Google Scholar PubMed
[36] N.H.A.Camargo, S.A.de Lima, E.Gemelli: Amer. J. Biomed. Eng.2 (2012) 41. 10.1016/j.bsecv.2015.02.006Search in Google Scholar
[37] L.Le Guéhennec, A.Soueidan, P.Layrolle, Y.Amouriq: Dent. Mater.23 (2007) 844. PMid:16904738 10.1016/j.dental.2006.06.025Search in Google Scholar
[38] M.Wong, J.Eulenberger, R.Schenk, E.Hunziker: J. Biomed. Mater. Res.29 (1995) 1567. PMid:8600147 10.1002/jbm.820291213Search in Google Scholar
[39] S.A.Cho, K.T.Park: Biomaterials24 (2003) 3611. 10.4018/978-1-4666-0122-2.ch006Search in Google Scholar
[40] X.Lu, Z.Zhao, Y.Leng: Mater. Sci. Eng. C27 (2007) 700. 10.1016/j.msec.2006.06.030Search in Google Scholar
[41] P.Y.Park, J.E.Davies: Clin. Oral Implants Res.11 (2000) 530. PMid:11168246 10.1034/j.1600-0501.2000.011006530.xSearch in Google Scholar
[42] J.Y.Lim, X.M.Liu, E.A.Vogler, H.J.Donahue: J. Biomed. Mater. Res. A68 (2004) 504. PMid:14762930 10.1002/jbm.a.20087Search in Google Scholar
[43] G.Zhao, Z.Schwartz, M.Wieland, F.Rupp, J.Geis-Gerstorfer, D.L.Cochran, B.D.Boyan: J. Biomed. Mater. Res. A74 (2005) 49. PMid:15924300 10.1002/jbm.a.30320Search in Google Scholar
[44] M.Lampin, W.Clérout, C.Legris, M.Degrange, M.F.Sigot-Luizard: J. Biomed. Mater. Res.36 (1997) 99. 10.1002/(SICI)1097-4636(199707)36:1<99::AID-JBM12>3.0.CO;2-ESearch in Google Scholar
[45] S.P.Xavier: PhD thesis, Caracterização e avaliação da biocompatibilidade do titânio submetido a diferentes tratamentos de superfície, State University of Júlio de Mesquita Filho, Brazil (2002).Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News