Startseite High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High temperature tensile behavior of Mg-2Al and Mg-6Al alloys

  • Jun Qiao , Long Zheng , Jiaxing Ji , Fubo Bian , Min He und Tiangang Niu
Veröffentlicht/Copyright: 18. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Effects of 2 and 6 wt.% Al additions on the high temperature tensile behavior of Mg were investigated. Elongation-to-failure tensile tests were conducted at four temperatures (300, 350, 400, and 450 °C) and two strain rates (102 and 10−3 s−1) to study tensile ductility. Strain-rate-change tensile tests were conducted at the same temperatures over a strain-rate range of 5 × 10−5–2 × 10−2 s−1. The experimental data show that the coarse-grained alloys exhibit elongations of about 100% at 450 °C and 10−3 s−1, and the Mg-6Al alloy presents a significant elongation improvement at 400 and 450 °C. Compared with pure Mg, Al additions of 2 and 6 wt.% effectively reduce the stress exponent, which decreases with increasing Al content. The reduced stress exponents may result from solute-drag creep created by Al atoms released from dissolution of Mg17Al12 phase at high temperatures.


*Correspondence address, Jun Qiao, Ph. D., Department of materials shaping and controlling, University of Science and Technology Liaoning, 185 Qianshan middle road, Anshan 114051, P. R. China, Tel.: +86-412-5929532, Fax: +86-412-5929535, E-mail:

References

[1] N.Stanford, K.Sotoudeh, P.S.Bate: Acta Mater.59 (2011) 4866. 10.1016/j.actamat.2011.04.028Suche in Google Scholar

[2] J.M.Boileau, P.A.Friedman, D.Q.Houston, S.G.Luckey: J. Mater. Eng. Perform.19 (2010) 467. 10.1007/s11665-010-9609-1Suche in Google Scholar

[3] L.Li, X.M.Zhang: Trans. Nonferrous Met. Soc. China21 (2011) 1491. 10.1016/S1003-6326(11)60886-8Suche in Google Scholar

[4] H.Somekawa, K.Hirai, H.Watanabe, Y.Takigawa, K.Higashi: Mater. Sci. Eng. A407 (2005) 53. 10.1016/j.msea.2005.06.059Suche in Google Scholar

[5] A.H.Cottrell, M.A.Jaswon: Proc. R. Soc. London, Ser. A199 (1949) 104. 10.1098/rspa.1949.0128Suche in Google Scholar

[6] N.Stanford, G.Sha, J.H.Xia, S.P.Ringer, M.R.Barnett: Scr. Mater.65 (2011) 919. 10.1016/j.scriptamat.2011.08.012Suche in Google Scholar

[7] W.J.Kim, S.W.Chung, C.S.Chung, D.Kum: Acta Mater.49 (2001) 3337. 10.1016/S1359-6454(01)00008-8Suche in Google Scholar

[8] A.K.Mukherjee, J.E.Bird, J.E.Dorn: Trans. of the ASM.62 (1968) 155.Suche in Google Scholar

[9] H.J.Frost, M.F.Ashby: Pergamon Press Inc., Oxford (1982). Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics. 10.1016/0378-3804(84)90015-9Suche in Google Scholar

[10] S.S.Vagarali, T.G.Langdon: Acta Mater.30 (1982) 1157. 10.1016/0001-6160(82)90009-8Suche in Google Scholar

[11] J.Qiao, F.B.Bian, M.He, Y.Wang: Trans. Nonferrous Met. Soc. China. 23 (2013) 2857. 10.1016/S1003-6326(13)62807-1Suche in Google Scholar

Received: 2017-06-15
Accepted: 2017-08-16
Published Online: 2017-12-18
Published in Print: 2018-01-09

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111581/html
Button zum nach oben scrollen