Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
-
Xiaoxian Chen
, Yongzhong Zhan , Feng Han , Fuda Guo and Chengxia Wei
Abstract
The phase equilibria in the Al–Mo–Y system have been experimentally investigated at 873 K. The existence of 10 binary compounds and 1 ternary phase Al43Mo4Y6 has been confirmed by using X-ray powder diffraction and scanning electron microscopy equipped with energy dispersive X-ray analysis. A new ternary phase Al4Mo2Y with space group I4/mmm (No. 139) has been found at 873 K. The structure, phase stability, elastic properties and densities of state of the Al4Mo2Y compound have been theoretically investigated by using first-principles calculations. The result of cohesive energy proves that Al4Mo2Y is stable. The elastic constants, bulk modulus, shear modulus, Young's modulus, the ratio of bulk modulus/shear modulus and Poisson's ratio of Al4Mo2Y are presented. According to the phase-disappearing method, the solubility of Al in Mo, AlMo3 and Al8Mo3 phase is determined to be about 16 at.%, 7.5 at.% and 1 at.%, respectively.
References
[1] S.C.Tjong, Z.Y.Ma: Mater. Sci. Eng. R29 (2000) 49–113. 10.1016/S0927-796X(00)00024-3Search in Google Scholar
[2] Y.Zhan, Z.Yang, H.Mo, Y.Du: Metall. Mater. Trans. A43 (2012) 29–36. 10.1007/s11661-011-0842-5Search in Google Scholar
[3] M.Pang, Y.Zhan, Y.Du: J. Solid State Chem.198 (2013) 344–356. 10.1016/j.jssc.2012.10.020Search in Google Scholar
[4] A.Akhlaghi, M.Noghani, M.Emamy: Proc. Mater. Sci.11 (2015) 55–60. 10.1016/j.mspro.2015.11.085Search in Google Scholar
[5] L.Meng, X.L.Zheng: Mater. Sci. Eng. A237 (1997) 109–118. 10.1016/S0921-5093(97)00096-8Search in Google Scholar
[6] X.Chen, H.Liu, Y.Zhan, H.Tang: Int. J. Mater. Res.107 (2016) 842–850. 10.3139/146.111405Search in Google Scholar
[7] S.Mondol, T.Alam, R.Banerjee, S.Kumar, K.Chattopadhyay: Mater. Sci. Eng. A687 (2017) 221–231. 10.1016/j.msea.2017.01.037Search in Google Scholar
[8] V.A.Bykov, V.E.Sidorov, T.V.Kulikova, K.Yu.Shunyaev: Bull. Russ. Acad. Sci. Phys.72 (2008) 1386–1370. 10.3103/S1062873808100171Search in Google Scholar
[9] F.Rovere, D.Music, J.M.Schneider, P.H.Mayrhofer: Acta Mater.58 (2010) 2708–2715. 10.1016/j.actamat.2010.01.005Search in Google Scholar
[10] B.Li, H.Wang, J.Jie, Z.Wei: Mater. Design.32 (2011) 1617–1622. 10.1016/j.matdes.2010.08.040Search in Google Scholar
[11] Y.H.Kim, A.Inoue, T.Masumoto: Mater. Trans. JIM.32 (1991) 331–338. 10.2320/matertrans1989.32.331Search in Google Scholar
[12] C.P.Chang, M.H.Loretto: Acta Metall.36 (1988) 805–810. 10.1016/0001-6160(88)90134-4Search in Google Scholar
[13] J.She, Y.Zhan, Z.Hu, C.Li, J.Hu, Y.Du, H.Xu: J. Alloys Compd.497 (2010) 118–120. 10.1016/j.jallcom.2010.03.073Search in Google Scholar
[14] X.J.Liu, M.Z.Wen, C.P.Wang, F.S.Panb: J. Alloys Compd.452 (2008) 283–290. 10.1016/j.jallcom.2006.11.029Search in Google Scholar
[15] J.Huang, B.Yang, H.Chen, H.Wang: J. Phase Equilib. Diff.36 (2015) 357–365. 10.1007/s11669-015-0390-6Search in Google Scholar
[16] V.Raghavan: J. Phase Equilib. Diff.29 (2008) 363–364. 10.1007/s11669-008-9330-zSearch in Google Scholar
[17] Y.Pan, W.Yang, C.Tang, Y.Lan, Y.Zhan: Phase Transit.88 (2015) 1111–1121. 10.1080/01411594.2015.1041950Search in Google Scholar
[18] H.Liu, Y.Pan, C.Tang, M.Liu, X.Chen, W.Yang, H.Tang, Y.Zhan: J. Phase Equilib. Diff.36 (2015) 218–223. 10.1007/s11669-014-0349-zSearch in Google Scholar
[19] H.Wang, Y.Zhan, W.Zhou: J. Phase Equilib. Diff.34 (2013) 322–327. 10.1007/s11669-013-0244-zSearch in Google Scholar
[20] S.Niemann, W.Jeitschko: J. Solid State Chem.116 (1995) 131–135. 10.1006/jssc.1995.1193Search in Google Scholar
[21] K.Yamaguchi, K.Simizu: Nippon Kinzoku Gakkai-Shi.4 (1940) 390–392.Search in Google Scholar
[22] F.Sperner: Z. Metallkd.50 (1959) 588–591.Search in Google Scholar
[23] J.B.Forsyth, G.Gran: Acta Crystallogr.15 (1962) 100–104. 10.1107/S0365110X62000304Search in Google Scholar
[24] L.K.Walford: Acta Crystallogr.17 (1964) 57–59. 10.1107/S0365110X64000123Search in Google Scholar
[25] J.C.Schuster, H.Ipser: Metall. Trans. A22 (1991) 1792–1736. 10.1007/BF02646496Search in Google Scholar
[26] N.Saunders: J. Phase Equilib.18 (1997) 370–378. 10.1007/s11669-997-0063-1Search in Google Scholar
[27] M.Eumann, G.Sauthoff, M.Palm: Z. Metallkd.97 (2006) 1502–1511. 10.3139/146.101412Search in Google Scholar
[28] L.Brewer, R.H.Lamoreaux, R.Ferro, R.Marazza, K.Girgis: IAEA.7 (1980) 123–127. 10.1007/BF02881193Search in Google Scholar
[29] H.Okamoto: J. Phase Equilib. Diff.31 (2010) 492–493. 10.1007/s11669-010-9758-9Search in Google Scholar
[30] Z.Du, C.Guo, C.Li, W.Zhang: J. Phase Equilib. Diff.30 (2009) 487–501. 10.1007/s11669-009-9564-4Search in Google Scholar
[31] R.L.Snyder: PhD Thesis, Yttrium-aluminum alloy studies, Iowa State University, USA (1960).Search in Google Scholar
[32] A.Inoue, K.Ohtera, T.Masumoto: Jpn. J. Appl. Phys.27 (1988) L736–L739. 10.1143/JJAP.27.1059Search in Google Scholar
[33] K.A.Gschneidner, F.W.Calderwood: Bull. Alloy Phase Diagr.10 (1989) 44–47. 10.1007/BF02882174Search in Google Scholar
[34] C.E.Lundin, D.T.Klodt: Trans. Am. Soc. Metals.54 (1961) 168–175.Search in Google Scholar
[35] T.Dagerhamn: Arkiv. For. Kemi. Stockholm.27 (1967) 363–380.Search in Google Scholar
[36] J.Gröbner, H.L.Lukas, F.Aldinger: J. Alloys Compd.220 (1995) 8–14. 10.1016/0925-8388(94)06028-2Search in Google Scholar
[37] S.Liu, Y.Du, H.I.Xu, C.He, J.C.Schuster: J. Alloys Compd.414 (2006) 60–65. 10.1016/j.jallcom.2005.06.078Search in Google Scholar
[38] T.Dagerhamn, S.Westman: Acta Crystallogr.20 (1966) 919–920. 10.1107/S0365110X66002093Search in Google Scholar
[39] D.M.Bailey: Acta Crystallogr.23 (1967) 729–733. 10.1107/S0365110X67003603Search in Google Scholar
[40] R.Richter, Z.Altounian, J.O.Strom-Olsen, U.Köster, M.Blank-Bewersdorff: J. Mater. Sci.22 (1987) 2983–2986. 10.1007/BF00721105Search in Google Scholar
[41] J.Rexer: Z. Metallkd.62 (1971) 844–848.Search in Google Scholar
[42] J.A.Leake: Acta Crystallogr.17 (1964) 918–924. 10.1107/S0365110X64002389Search in Google Scholar
[43] Y.N.Grin, M.Ellner, K.Peters, J.C.Schuster: The crystal structures of Mo4Al17 and Mo5Al22, R. Oldenbourg Verlag, München (1995) 96–99.Search in Google Scholar
[44] S.V.Meschel, O.J.Kleppa: J. Alloys Compd.191 (1993) 111–116. 10.1016/0925-8388(93)90280-ZSearch in Google Scholar
[45] P.I.Kripyakevich: Kristallografiya.5 (1960) 463–464.Search in Google Scholar
[46] M.D.Segall, P.J.D.Lindan, M.J.Probert, C.J.Pickard, P.J.Hasnip, S.J.Clark, M.C.Payne: J. Phys. Condens Matter.14 (2002) 2717–2744. 10.1088/0953-8984/14/11/301Search in Google Scholar
[47] M.L.Fornasini, A.Palenzona: J. Less Common Met.45 (1976) 137–141. 10.1016/0022-5088(76)90205-8Search in Google Scholar
[48] J.P.Perdew, K.Burke, M.Ernzerhof: Phys. Rev. Lett.77 (1996) 3865. PMid:10062328 10.1103/PhysRevLett.77.3865Search in Google Scholar PubMed
[49] T.H.Fischer, J.Almlof: J. Phys. Chem.96 (1992) 9768–9774. 10.1021/j100193a008Search in Google Scholar
[50] A.Reuss: Z. Angew. Math. Mech.9 (1929) 49–58. 10.1002/zamm.19290090104Search in Google Scholar
[51] R.Hill: Proc. Phys. Soc. A.65 (1952) 349. 10.1088/0370-1298/65/5/307Search in Google Scholar
[52] W.Voigt: Lehrbuch der Kristallphysik. Leipzig: Tubner Press. (1928). 10.1007/978-3-663-15884-4Search in Google Scholar
[53] M.Zhao, L.Song, X.Fan: The Boundary Theory of Phase Diagrams and Its Application. Rules for Phase Diagram Construction with Phase Regions and Their Boundaries. (2009) 135–149. 10.1007/978-3-642-02940-0Search in Google Scholar
© 2018, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Original Contributions
- Diffusion behaviour of Pt in platinum aluminide coatings during thermal cycles
- Ternary Al–Mo–Y phase diagram and the new phase Al4Mo2Y
- Evaluation of the thixoformability of 318.1 aluminum alloy
- High temperature tensile behavior of Mg-2Al and Mg-6Al alloys
- Anisotropic thermomechanical behavior of AA6082 aluminum alloy Al–Mg–Si–Mn
- Significant enhancement of bond strength in the roll bonding process using Pb particles
- Nanoindentation characterization of Al-matrix nanocomposites produced via spark plasma sintering
- Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
- Elaboration of a triphasic calcium phosphate and silica nanocomposite for maxillary grafting and deposition on titanium implants
- Short Communications
- Microstructural effects of isothermal aging on a doped SAC solder alloy
- Two-stage synthesis of ultrafine powder of chromium carbide
- DGM News
- DGM News