Startseite Technik Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Study and development of NiAl intermetallic coating on hypo-eutectoid steel using highly activated composite granules of the Ni–Al system

  • Aamir Shahzad , Vladislav Yu. Zadorozhnyy , Mikhail D. Pavlov , Dmitri V. Semenov und Sergey D. Kaloshkin
Veröffentlicht/Copyright: 18. Dezember 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

NiAl intermetallic coating thickness of about 50 μm was fabricated on hypo-eutectoid steel by mechanical alloying using pre-activated Ni–Al composite granules as coating material. First, Ni and Al powders were mixed with the composition of Ni-50 at.% Al and mechanically activated in a planetary ball mill, until the composite granules of this powder mixture, having maximum activity (9 cm sec−1), were formed after 120 min of milling at 200 rpm. The composite granules were then taken out from the planetary ball mill just before the critical time, i. e. the time at which these granules synthesize and convert to an intermetallic NiAl compound. The highly activated composite granules of Ni–Al were then put into the vial of a vibratory ball mill with the substrate on top of the chamber. After mechanical alloying for 60 min in the vibratory ball mill, the composite granules were synthesized fully and heat was produced during the synthesis which helped producing a thick and strong adhesive coating of NiAl intermetallic on the steel substrate. The main advantage of this technique is that not only is time saved but also there is no need for any post mechanical alloying process such as annealing or laser treatment etc. to get homogeneous, strongly bonded intermetallic coatings. X-ray diffraction analysis clearly indicates the formation of NiAl phase. Micro-hardness of the coating and substrate was also measured. The cross-sectional microstructure of the composite granules and the final coating were studied by scanning electron microscopy.


*Correspondence address, Aamir Shahzad, MSc Advanced Materials science, College of new materials and nano technology, NUST, Misis, Moscow, Russia, National university of science and technology, MISIS, Moscow, Russia, Leninsky prospect, Moscow, 119119, Russia, Tel.: +7 (495) 6384413, Fax: +7 (495) 6384595, E-mail:

References

[1] C.Sierra, A.Vazquez: J. Surf. Coat. Technol.200 (2006) 43834388. 10.1016/j.surfcoat.2005.02.176Suche in Google Scholar

[2] D.Zhong, J.J.Morre, E.Sutter, B.Mishra: Surf. Coat. Technol.130 (2000) 3338. 10.1016/j.surfcoat.2005.07.084Suche in Google Scholar

[3] B.S.Murty, K.H.S.Singh, S.K.Pabi: Mater. Sci.19 (1996): 565. 10.1007/BF02744829Suche in Google Scholar

[4] B.S.Murty, J.Joardar, S.K.Pabi: J. Mater. Sci. Lett.15 (1996): 2171. 10.1007/BF00241159Suche in Google Scholar

[5] A.Khajesarvi, G.Akbari: Metall. Mater. Trans.A (2016) 47.10.1007/s11661-016-3343-8Suche in Google Scholar

[6] M.Mohammadnezhab, et al.: Surf. Coat. Technol.238 (2014) 180187. 10.1016/j.surfcoat.2013.10.071Suche in Google Scholar

[7] A.Canakci, F.Erdemir, T.Varol, S.Özkaya: Indian J. Eng. Mater. Sci.21 (2015) 595600.Suche in Google Scholar

[8] A.Canakci, T.Varol, F.Erdemir, S.Özkaya, H.Mindivan: Int. J. Adv. Manuf. Tech.73 (2014) 849858. 10.1007/s00170-014-5851-2Suche in Google Scholar

[9] A.Canakci, F.Erdemir, T.Varol, R.Dalmıs, S.Ozkaya: Powder Technol. S0032 5910(14)00734-7. 10.1016/j.powtec.2014.08.034Suche in Google Scholar

[10] A.Canakci, T.Varol, F.Erdemir, S.Özkaya: Powder Metall. Met. Ceram.53 (2015). 10.1007/s11106-015-9662-2Suche in Google Scholar

[11] B.A.Mason, L.J.Groven, S.F.Son: J. Appl. Phys.114 (2013) 113501. 10.1063/1.4821236Suche in Google Scholar

[12] F.Bernard, E.Gaffet: International journal of self-propagating high temperature synthesis, volume 10, (2001), 2.Suche in Google Scholar

[13] R.Knepper, M.R.Snyder, G.Fritz, K.Fisher, O.M.Knio, T.P.Weihs: J. Appl. Phys.105 (2009). 10.1063/1.3087490Suche in Google Scholar

[14] S.Lurie, Yu.Abuzin, R.Sokolov, M.Karashaev, P.Belov: International journal of engineering and innovative Technology (IJEIT), Volume 4, (2014) 5.Suche in Google Scholar

[15] M.A.Korchagin, T.F.Grigor'eva, B.B.Bokhonov, M.R.Sharafutdinov, A.P.Barinova, N.Z.Lyakhov: Combust. Explos. Shock Waves39 (2003) 4350. 10.1023/A:1022145201911Suche in Google Scholar

[16] M.A.Korchagin, T.F.Grigor'eva, B.B.Bokhonov, M.R.Sharafutdinov, A.P.Barinova, N.Z.Lyakhov: Combust. Explos. Shock Waves39 (2003) 5158. 10.1023/A:1022145201911Suche in Google Scholar

[17] V.Y.Zadorozhnyy, S.D.Kaloshkin, M.N.Churyukanova, Yu.V.Borisova: Metall. Mater. Trans. A44 (2013) 1779. 10.1007/s11661-012-1544-3Suche in Google Scholar

[18] V.Zadorozhnyy, S.Kaloshkin, V.Tcherdyntsev, M.Gorshenkov, A.Komissarov, M.Zadorozhnyy: J. Alloys. Compd.586 (2014) S373S376. 10.1016/j.jallcom.2013.03.263Suche in Google Scholar

[19] V.Zadorozhnyy, S.Kaloshkin, E.Kaevitser, S.Romankov: J. Alloys. Compd.509 (2011) S507S509. 10.1016/j.jallcom.2011.01.164Suche in Google Scholar

[20] V.Yu Zadorozhnyy, A.Shahzad, M.D.Pavlov, D.S.Kozak, A.M.Chirkov, D.S.Zagrebin, R.S.Khasenova, S.V.Komarov, S.D.Kaloshkin: J. Alloys Compd.707 (2017) 351357. 10.1016/j.jallcom.2016.11.189Suche in Google Scholar

[21] T.Mandal, B.K.Mishra, A.Garga, D.Chaira: Powder Technol.253 (2014) 650656. 10.1016/j.powtec.2013.12.026Suche in Google Scholar

[22] A.A.Drozdov, A.E.Morozov, K.B.Povarova: Russ. Metall. (2013) 2013: 347. 10.1134/S0036029513050054Suche in Google Scholar

[23] Yu.Abuzin, S.Gorjacheva, N.Nikitin: Metallurgy Engineering. No.1 (2012) 4146.Suche in Google Scholar

[24] M.Mohammadnezhad, M.Shamanian, M.H.Enayati: Appl. Surf. Sci.263 (2012) 730736. 10.1016/j.apsusc.2012.09.151Suche in Google Scholar

Received: 2017-06-17
Accepted: 2017-08-21
Published Online: 2017-12-18
Published in Print: 2018-01-09

© 2018, Carl Hanser Verlag, München

Heruntergeladen am 6.1.2026 von https://www.degruyterbrill.com/document/doi/10.3139/146.111567/html
Button zum nach oben scrollen