Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
-
Himanshu Vashishtha
, Ravindra V. Taiwade und Sumitra Sharma
Abstract
Austenitic stainless steels are often used to handle organic acids such as acetic acid (CH3COOH), which are extensively used in food contact applications and chemical industries for manufacturing medicines, nutrition and various chemical amalgams. In the present investigation an attempt has been made to compare the corrosion behavior of Cr–Ni (AISI type 304), Cr–Mn–Ni (type 201) and Cr (type 430) stainless steel for economical replacement of higher cost Cr–Ni grade. Immersion testing was performed at room temperature and boiling temperature in acetic acid. Atomic absorption spectroscopy was carried out to evaluate metal ion concentration in the immersion solution. The surface morphology of pit formation was characterized using scanning electron microscopy coupled with energy dispersive X-ray spectroscopy. The effect of elemental leaching on electrical conductivity of the immersion solution was evaluated and correlated with pH measurements. A new mechanism has been proposed for the pit formation due to manganese sulfide inclusions. The replacement compatibility was further confirmed with anodic polarization testing and a successful replacement was established for room temperature applications.
References
[1] T.Oshima, Y.Habara, K.Kuroda: ISIJ Int.47 (2007) 359. 10.2355/isijinternational.47.359Suche in Google Scholar
[2] R.Dalipi, L.Borgese, A.Casaroli, M.Boniardi, U.Fittschen, K.Tsuji, L.E.Depero: J. Food Eng.173 (2016) 85. 10.1016/j.jfoodeng.2015.10.045Suche in Google Scholar
[3] D.G.Barceloux: Clin. Toxicol.37 (1999) 239. 10.1081/CLT-100102423Suche in Google Scholar
[4] G.Herting, D.Lindstrom, I.O.Wallinder, C.Leygraf: J. Food Eng.93 (2009) 23. 10.1016/j.jfoodeng.2008.12.019Suche in Google Scholar
[5] K.S.George, S.Nesic: Corrosion63 (2007) 178. 10.5006/1.3278342Suche in Google Scholar
[6] S.K.Singh, A.K.Mukherjee: J. Mater. Sci. Technol.26 (2010) 264. 10.1016/S1005-0302(10)60044-8Suche in Google Scholar
[7] J.Amri, E.Gulbrandsen, R.P.Nogueira: Corros. Sci.52 (2010) 1728. 10.1016/j.corsci.2010.01.010Suche in Google Scholar
[8] I.Sekine, A.Masuko, K.Senoo: Corrosion43 (1987) 553. 10.5006/1.3583900Suche in Google Scholar
[9] E.Otero, A.Pardo, M.V.Utrilla, F.J.Perez, C.Merino: Corros. Sci.39 (1997) 453. 10.1016/S0010-938X(97)86097-0Suche in Google Scholar
[10] A.Turnbull, M.Ryan, A.Willetts, S.Zhou: Corros. Sci.45 (2003) 1051. 10.1016/S0010-938x(02)00149-xSuche in Google Scholar
[11] G.Herting, I.O.Wallinder, C.Leygraf: J. Food Eng.87 (2008) 291. 10.1016/j.jfoodeng.2007.12.006Suche in Google Scholar
[12] I.Sekine, S.Hatakeyama, Y.Nakajawa: Corros. Sci.27 (1987) 275. 10.1016/0010-938X(87)90023-0Suche in Google Scholar
[13] I.Sekine, S.Hatakeyama, Y.Nakajawa: Electrochim. Acta32 (1987) 915. 10.1016/0013-4686(87)87083-4Suche in Google Scholar
[14] N.Mazinanian, I.O.Wallinder, Y.Hedberg: J. Food Eng.145 (2015) 51. 10.1016/j.jfoodeng.2014.08.006Suche in Google Scholar
[15] V.B.Singh, A.K.Gupta: Corrosion57 (2001) 43. 10.5006/1.3290329Suche in Google Scholar
[16] V.S.Rao, L.K.Singhal: Corrosion66 (2010) 085004-1. 10.5006/1.3479954Suche in Google Scholar
[17] A.Fattah-alhosseini, S.Vafaeian: Egypt. J. Pet.24 (2015) 333. 10.1016/j.ejpe.2015.07.016Suche in Google Scholar
[18] R.Dalipi, L.Borgese, A.Casaroli, M.Boniardi, U.Fittschen, K.Tsuji, L.E.Depero: J. Food Eng.173 (2016) 85. 10.1016/j.jfoodeng.2015.10.045Suche in Google Scholar
[19] R.V.Taiwade, A.P.Patil, S.J.Patre, R.K.Dayal: ISIJ Int.52 (2012) 1879. 10.2355/isijinternational.52.1879Suche in Google Scholar
[20] ASTM A262: Standard Practices for detecting susceptibility to intergranular attack in austenitic stainless steels (2016).Suche in Google Scholar
[21] ASTM G31–72: Standard practice for laboratory immersion corrosion testing of metals (2004).Suche in Google Scholar
[22] ASTM G1–03: Standard practice for preparing, cleaning, and evaluating corrosion test specimens (2011).Suche in Google Scholar
[23] V.Singh, A.Gupta: Corrosion57 (2001) 43. 10.5006/1.3290329Suche in Google Scholar
[24] S.Mishra, T.J.Lienert, M.Q.Johnson, T.Debroy: Acta Mater.56 (2008) 2133. 10.1016/j.actamat.2008.01.028Suche in Google Scholar
[25] M.P.Ryan, D.E.Williams, R.J.Chater, B.M.Hutton, D.S.McPhail: Nature415 (2002) 770. PMid:11845203; 10.1038/415770aSuche in Google Scholar
[26] I.Sekine, T.Kawase, M.Kobayashi, M.Yuasa: Corros. Sci.32 (1991) 815. 10.1016/0010-938X(91)90026-LSuche in Google Scholar
[27] D.E.Williams, Y.Y.Jhu: J. Electrochem. Soc.147 (2000) 1763. 10.1149/1.1393431Suche in Google Scholar
[28] L.Freire, M.J.Carmezim, M.G.S.Ferreira, M.F.Montemor: Electrochim. Acta.56 (2011) 5280. 10.1016/j.electacta.2011.02.094Suche in Google Scholar
[29] V.Hays, R.L.Gall, G.Saindrenan, D.Roptin: Scr. Mater.38 (1998) 391. 10.1016/S1359-6462(97)00470-3Suche in Google Scholar
[30] T.L.Sudesh, L.Wijesinghe, D.J.Blackwood: Corros. Sci.49 (2007) 1755. 10.1016/j.corsci.2006.10.025Suche in Google Scholar
[31] A.Chiba, I.Muto, Y.Sugawara, N.Hara: J. Electrochem. Soc.159 (2012) C341. 10.1149/2.054208jesSuche in Google Scholar
[32] P.Schmuki, H.Hildebrand, A.Friedrich, S.Virtanen: Corros. Sci.47 (2005) 1239. 10.1016/j.corsci.2004.05.023Suche in Google Scholar
[33] V.Vignal, N.Mary, R.Oltra, J.Peultier: J. Electrochem. Soc.153 (2006) B352. 10.1149/1.2218762Suche in Google Scholar
[34] J.Stewart, D.E.Williams: Corros. Sci.33 (1992) 457. 10.1016/0010-938X(92)90074-DSuche in Google Scholar
[35] M.J.Carmezim, A.M.Simoes, M.F.Montemor, M.D.Belo: Corros. Sci.47 (2005) 581. 10.1016/j.corsci.2004.07.002Suche in Google Scholar
[36] M.Nagayama, M.Cohen: J. Electrochem. Soc.109 (1962) 781. 10.1149/1.2425555Suche in Google Scholar
© 2017, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Editorial
- Downloads and the impact of Open Access at IJMR
- Original Contributions
- A material selection approach using the TODIM (TOmada de Decisao Interativa Multicriterio) method and its analysis
- Investigation of the influence of Fe on the microstructure and properties of Ti5553 near-β titanium alloy with combinatorial approach
- Evolution of the temperature, microstructures and microsegregation in equiaxed solidification of Al-5 wt.% Cu alloy
- Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
- Thermal shock behavior of rare earth modified alumina ceramic composites
- Investigation of tribological and corrosion properties of CuTi–alumina nanocomposite fabricated by mechanical alloying
- Effect of acetic acid on corrosion behavior of AISI 201, 304 and 430 stainless steels
- Verification of strength mis-match of electron beam welded heavy thickness titanium alloy
- Short Communications
- Effect of toughening Fe2B by the addition of tungsten on the wear resistance of Fe–B–C alloy
- Microstructural stability of heat-resistant high-pressure die-cast Mg-4Al-4Ce alloy
- DGM News
- DGM News