Startseite Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Phase composition and microstructure of materials in the Ir–Ru–B system prepared by arc melting and VHP sintering

  • Xiaolong Zhou , Zhaobo Zhou , Kunhua Zhang und Jie Yu
Veröffentlicht/Copyright: 4. Mai 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, materials in the Ir–Ru–B system with nominal compositions of Ir–Ru–2B and 3Ir–Ru–4B were synthesized by arc melting and vacuum hot press (VHP) sintering. The phase composition and microstructure were characterized using X-ray diffraction, back scatter electron imaging, energy dispersive spectroscopy and electron back scatter diffraction. Different preparation processes for these Ir–Ru–B system materials were studied. The results show that Ir–Ru–2B prepared by arc melting and VHP sintering contains Ir(Ru)B0.9 and Ru(Ir)B solid solutions, while 3Ir–Ru–4B contains Ir(Ru)B0.9, Ru(Ir)B2 and Ir(Ru) solid solutions. The error for the lattice parameters of the VHP sintered samples was larger than that of the arc melted samples. The energy spectrum analysis of the Ir–Ru–2B samples prepared using different processes indicates that the solubility of the solid solutions in the VHP sintered samples was higher than the solubility in the arc melted samples. The formation mechanisms for the (Ir, Ru)–B, (Ir(Ru)B0.9, Ru(Ir)B2 and Ru(Ir)B) and Ir(Ru) solid solutions are discussed in detail. There is more Ir(Ru) solid solution in the VHP sintered sample than in the arc melted sample, and the grain orientation of the former is more complex than that of the latter.


*Correspondence address, Prof. Xiaolong Zhou, Department of Materials Science and Engineering, Kunming University of Science and Technology, Kunming, 650093, P. R. China, Tel.: +8687165334185, Fax: +8687165334185, E-mail:

References

[1] J.Haines, J.M.Léger, G.Bocquillon: Annu. Rev. Mater. Res.31 (2001) 1. 10.1146/annurev.matsci.31.1.1Suche in Google Scholar

[2] J.Musil: Surf. Coat. Technol.125 (2000) 322. 10.1016/S0257-8972(99)00586-1Suche in Google Scholar

[3] V.Brazhkin, N.Dubrovinskaia, M.Nicol, N.Novikov, R.Riedel, V.Solozhenko, Y.Zhao: Nat. Mater.3 (2004) 576. 10.1038/nmat1196Suche in Google Scholar PubMed

[4] D.M.Teter, R.J.Hemley: Science271 (1996) 53. 10.1126/science.271.5245.53Suche in Google Scholar

[5] V.L.Solozhenko, O.O.Kurakevych, D.Andrault, G.Y.Le, M.Mezouar: Phys. Rev. Lett.102 (2009) 015506. PMid:19257210; 10.1103/PhysRevLett.102.015506Suche in Google Scholar PubMed

[6] A.L.Ivanovskii: Prog. Mater Sci.57 (2012) 184. 10.1016/j.pmatsci.2011.05.004Suche in Google Scholar

[7] H.Y.Chung, M.B.Weinberger, J.B.Levine, A.Kavner, J.M.Yang, S.H.Tolbert, R.B.Kaner: Science316 (2007) 436. PMid:17446399; 10.1126/science.1139322Suche in Google Scholar PubMed

[8] Z.L.Zhao, K.Bao, D.Li, D.F.Duan, F.B.Tian, X.L.Jin, C.B.Chen, X.L.Huang, B.B.Liu, T.Cui: Sci. Rep.4 (2014) 4797. 10.1038/srep04797Suche in Google Scholar PubMed PubMed Central

[9] Z.L.Xie, M.Lugovy, N.Orlovskaya, T.Graule, J.Kuebler, M.Mueller, H.L.Gao, M.Radovic, D.A.Cullen: J. Alloys Compd.634 (2015) 168178. 10.1016/j.jallcom.2015.01.291Suche in Google Scholar

[10] T.Venkateswaran, B.Basu, G.B.Raju, D.Y.Kim: J. Eur. Ceram. Soc.26 (2006) 2431. 10.1016/j.jeurceramsoc.2005.05.011Suche in Google Scholar

[11] H.Y.Chung, M.B.Weinberger, J.M.Yang, S.H.Tolbert, R.B.Kaner: Appl. Phys. Lett.92 (2008) 261904. 10.1063/1.2946665Suche in Google Scholar

[12] Y.Pan, W.M.Guan, W.T.Zheng: Dalton Trans.43 (2014) 5168. PMid:24496462; 10.1039/C3DT52675ESuche in Google Scholar PubMed

[13] Z.F.Li, D.F.Zheng, Z.H.Ding, Y.F.Li, B.Yao, Y.S.Li, X.D.Zhao, G.C.Yu, Y.Tang, W.T.Zheng, X.Y.Liu: Mater. Res. Bull.74 (2016) 188. 10.1016/j.materresbull.2015.10.039Suche in Google Scholar

[14] Z.Xie, A.C.Terracciano, D.A.Cullen, R.G.Blair, N.Orlovskaya: Adv. Appl. Ceram.114 (2015) 429. 10.1179/1743676115Y.0000000002Suche in Google Scholar

[15] I.Zeiringer, X.Y.Cheng, X.Q.Chen, E.Bauer, G.Giester, P.F.Rogl: Sci. China Mater.58 (2015) 649. 10.1007/s40843-015-0078-6Suche in Google Scholar

[16] I.L.Shabalin: Ultra-High Temperature Materials I: Carbon (Graphene/Graphite) and Refractory Metals, Springer-Verlag, Dordrecht (2014). 10.1007/978-94-007-7587-9Suche in Google Scholar

[17] Q.F.Gu, G.Krauss, W.Steurer: Adv. Mater.20 (2008) 3620. 10.1002/adma.200703025Suche in Google Scholar

[18] M.B.Weinberger, J.B.Levine, H.Y.Chung, R.W.Cumberland, H.I.Rasool, J.M.Yang, R.B.Kaner, S.H.Tolbert: Chem. Mater.21 (2009) 1915. 10.1021/cm900211vSuche in Google Scholar

[19] D.Zivkovic, L.Stuparevic: Materials and Geoenvironment52 (2005) 463. http://www.rmz-mg.com/letniki/rmz52/rmz52_0463-0468.pdfSuche in Google Scholar

[20] W.Obrowski: Metall17 (1963) 108. (in German).Suche in Google Scholar

[21] H.Okamoto: J. Phase Equilib.13 (1992) 565. 10.1007/BF02665768Suche in Google Scholar

Received: 2016-09-20
Accepted: 2017-02-09
Published Online: 2017-05-04
Published in Print: 2017-05-15

© 2017, Carl Hanser Verlag, München

Heruntergeladen am 16.11.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111492/pdf
Button zum nach oben scrollen