Effects of fiber volume fraction on strain of piezoelectric fiber composites
-
Fan Lu
, Xiujuan Lin , Hongda Geng und Shifeng Huang
Abstract
Piezoceramic fibers as the active deforming component in piezoelectric fiber composites have the largest influence on the overall strain of the composites. The results of this study show that the fabricated composites exhibited clearly anisotropic actuation properties. The free strain of piezoelectric fiber composites with 70 % by volume fibers in the longitudinal direction was 2.9 times of that in the transverse direction at the excitation voltage of 2 000 V and excitation frequency of 0.1 Hz. Larger fiber volume fraction can increase the free strain of the composites, e. g. in this case the free strain increased by about 24.6 % and 33.6 % in the longitudinal and transverse directions, respectively, as the fiber volume fraction increased from 70 % to 78 %. The piezoelectric strain coefficient d33 of piezoelectric fiber composites exhibits nonlinear dependency on the actuation voltage and linear dependency on the logarithm of frequency.
References
[1] X.J.Lin, K.C.Zhou, X.Y.Zhang, D.Zhang: Trans. Nonferrous Met. Soc. China23 (2013) 98. 10.1016/S1003-6326(13)62435-8Suche in Google Scholar
[2] S.C.Li, K.J.Zhu, J.H.Qiu, X.M.Pang: J. Inorg. Mater.28 (2003) 331. 10.3724/SP.J.1077.2013.12205Suche in Google Scholar
[3] A.A.Bent, A.A.Bent: J. Intell. Mater. Syst. Struct.8 (1997) 903. 10.1177/1045389X9700801101.Suche in Google Scholar
[4] N.W.Hagood, R.Kindel, K.Ghandi, P.Gaudenzi: Proc. SPIE Smart 1917, Struct. Intell. Syst. (1993) 341. 10.1117/12.152766Suche in Google Scholar
[5] W.K.Wilkie, R.G.Bryant, J.W.High, R.L.Fox, R.F.Hellbaum, A.Jalink, B.D.Little, P.H.Mirick: Indust. Comm. Appl. Smart. Struct. Technol. (2000) 323. 10.1117/12.388175Suche in Google Scholar
[6] X.J.Lin, K.C.Zhou, T.W.Button, D.Zhang: J. Appl. Phys.114 (2013) 027015. 10.1063/1.4812224Suche in Google Scholar
[7] R.B.Williams: J. Reinf. Plast. Compos.23 (2004) 1741. 10.1177/0731684404040171Suche in Google Scholar
[8] A.Belloli, D.Niederberger, S.Pietrzko, M.Morari, P.Ermanni: J. Intell. Mater. Syst. Struct.18 (2007) 275. 10.1177/1045389X06066029Suche in Google Scholar
[9] H.P.Konka, M.A.Wahab, K.Lian: Sens. Actuators A: Phys.194 (2013) 84. 10.1016/j.sna.2012.12.039Suche in Google Scholar
[10] S.Ju, S.H.Chae, Y.Choi, C.H.Ji: Sens. Actuators A: Phys.226 (2015) 126. 10.1016/j.sna.2015.02.025Suche in Google Scholar
[11] S.Panda, N.H.Reddy, A.S.Pavan Kumar: Arch. Appl. Mech. 85 (2015) 691. 10.1007/S00419-015-0982-YSuche in Google Scholar
[12] W.K.Wilkie, D.J.Inman, J.M.Lloyd, J.W.High: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference (2004) 19. 10.2514/MSDM04Suche in Google Scholar
[13] C.R.Bowen, L.J.Nelson, R.Stevens, M.G.Cain, M.Stewart: J. Electroceram.16 (2006) 263. 10.1007/S10832-006-9862-8Suche in Google Scholar
[14] C.R.Bowen, A.Bowles, S.Drake, N.Johnson, S.Mahon: Ferroelectrics228 (1999) 257. 10.1080/00150199908226140Suche in Google Scholar
[15] R.B.Williams, D.J.Inman, W.K.Wilkie: ASME Int. Mech. Eng. Cong. Exposition68 (2003) 11. 10.1115/IMECE2003-41205Suche in Google Scholar
[16] S.Q.Zhang, Y.X.Li, R.Schmidt: Compos. Struct.126 (2015) 89. 10.1016/j.compstruct.2015.02.051.Suche in Google Scholar
[17] A.Schönecker, in: A.Safari, E. K.Akdogan (Eds.), Piezoelectric and acoustic materials for transducer applications, Springer, USA (2008) 261. 10.1007/978-0-387-76540-2_13Suche in Google Scholar
[18] Y.Lin, Y.Lin: Compos. Sci. Technol.68 (2008) 1911. 10.1016/j.compscitech.2007.12.017.Suche in Google Scholar
[19] S.J.Lee, J.N.Reddy, F.Rostam: Finite Elem. Anal. Des.43 (2006) 1. 10.1016/j.finel.2006.04.008Suche in Google Scholar
[20] X.J.Lin, K.C.Zhou, S.Zhu, Z.Q.Chen, D.Zhang: Sens. Actuators A: Phys.203 (2013) 304. 10.1016/j.sna.2013.09.014Suche in Google Scholar
[21] H.S.Shen, H.S.Shen: Eng. Struct.90 (2015)183. 10.1016/j.engstruct.2015.02.005Suche in Google Scholar
[22] R.B.Williams, D.J.Inman, W.K.Wilkie, R.B.Williams: J. Intell. Mater. Syst. Struct.17 (2006) 601. 10.1177/1045389X06059501Suche in Google Scholar
[23] G.Robert, D.Damjanovic, N.Setter, A.V.Turik: J. Appl. Phys.89 (2001) 5067. 10.1063/1.1359166Suche in Google Scholar
[24] S.B.Seshadri, A.D.Prewitt, A.J.Studer, D.Damjanovic, J.L.Jones: Appl. Phys. Lett.102 (2013) 042911. 10.1063/1.4789903Suche in Google Scholar
© 2016, Carl Hanser Verlag, München
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of Peierls stress and strain-hardening parameters on EMR emission in metals and alloys during progressive plastic deformation
- Relaxation and diffusion barriers at step edges of Cu, Ag and Au homo- and heterogeneous systems: Case of (100) facet
- Simulation analysis on impurity distribution in mc-Si grown by directional solidification for solar cell applications
- Experimental investigation and thermodynamic calculation of the Mg–Sr–Zr system
- Microstructures and properties of Cr–Cu/W–Cu bi-layer composite coatings prepared by mechanical alloying
- Innovative approach to protect magnesium powder during sintering
- Friction stir welding of foamable AlSi7 reinforced by B4C
- Incorporation of SiC particles in FS welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance
- Effects of fiber volume fraction on strain of piezoelectric fiber composites
- Dry wear behavior of cooling-slope-cast hypoeutectic aluminum alloy
- Short Communications
- In-situ grown interwoven NiSe on Ni foam as a catalyst for hydrazine oxidation
- DGM News
- DGM News
Artikel in diesem Heft
- Contents
- Contents
- Original Contributions
- Effect of Peierls stress and strain-hardening parameters on EMR emission in metals and alloys during progressive plastic deformation
- Relaxation and diffusion barriers at step edges of Cu, Ag and Au homo- and heterogeneous systems: Case of (100) facet
- Simulation analysis on impurity distribution in mc-Si grown by directional solidification for solar cell applications
- Experimental investigation and thermodynamic calculation of the Mg–Sr–Zr system
- Microstructures and properties of Cr–Cu/W–Cu bi-layer composite coatings prepared by mechanical alloying
- Innovative approach to protect magnesium powder during sintering
- Friction stir welding of foamable AlSi7 reinforced by B4C
- Incorporation of SiC particles in FS welded zone of AZ31 Mg alloy to improve the mechanical properties and corrosion resistance
- Effects of fiber volume fraction on strain of piezoelectric fiber composites
- Dry wear behavior of cooling-slope-cast hypoeutectic aluminum alloy
- Short Communications
- In-situ grown interwoven NiSe on Ni foam as a catalyst for hydrazine oxidation
- DGM News
- DGM News