Startseite Technik In-situ grown interwoven NiSe on Ni foam as a catalyst for hydrazine oxidation
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

In-situ grown interwoven NiSe on Ni foam as a catalyst for hydrazine oxidation

  • Bin Dong , Xiao Li , Xiao Shang , Yong-Ming Chai und Chen-Guang Liu
Veröffentlicht/Copyright: 5. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

NiSe was prepared in-situ on nickel foam (NiSe/NF), using a solvothermal process. The NiSe/NF consisted of interwoven nanorods and nanowires. The interwoven NiSe/NF was of good crystallinity and contained no impurities, and consisted of many nanorods and a few nanowires. The interwoven structure uniformly covered the NF substrate, which can potentially yield a large surface area with abundant active sites, and thus high catalytic activity. The NiSe/NF was used as a working electrode for hydrazine oxidation, in 1.0 mol L−1 KOH containing 20 mmol L−1 N2H4 · H2O. Excellent electrocatalytic activity and stability of NiSe/NF for hydrazine oxidation was observed, with a current density of 22 mA cm−2 at −0.53 V. The interwoven structure and good conductivity of NiSe/NF promoted its electrocatalytic activity.


*Correspondence address, Dr. Bin Dong, Prof. Chen-Guang Liu, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, P. R. China, Tel.: +86-532-86981376, Fax: +86-532-86981787, E-mail: (B. Dong), E-mail: (C.-G. Liu)

References

[1] X.H.Yan, T.S.Zhao, L.An, G.Zhao, L.Zeng: Int. J. Hydrogen Energy40 (2015) 16540. 10.1016/j.ijhydene.2014.11.140Suche in Google Scholar

[2] Y.Lin, R.Ran, Y.M.Guo, W.Zhou, R.Cai, J.Wang, Z.P.Shao: Int. J. Hydrogen Energy35 (2010) 2637. 10.1016/j.ijhydene.2009.04.019Suche in Google Scholar

[3] F.Yang, K.Cheng, G.L.Wang, D.X.Cao: J. Electroanal. Chem.756 (2015) 186. 10.1016/j.jelechem.2015.08.023Suche in Google Scholar

[4] H.L.Chen, J.L.Duan, X.L.Zhang, Y.F.Zhang, C.Guo, L.Nie, X.W.Liu: Mater. Lett.126 (2014) 9. 10.1016/j.matlet.2014.03.095Suche in Google Scholar

[5] Q.Luo, M.Y.Peng, X.P.Sun, A.M.Asiri: RSC Adv.5 (2015) 87051. 10.1039/C4RA06092JSuche in Google Scholar

[6] Y.Yang, J.B.Liu, H.Q.Dai, Y.H.Cui, J.S.Liu, X.J.Liu, Z.W.Fu: J. Alloys Compd.661 (2016) 190. 10.1016/j.jallcom.2015.11.119Suche in Google Scholar

[7] Y.Y.Duan, Q.W.Tang, J.Liu, B.L.He, L.M.Yu: Nanoscale6 (2014) 12601. 10.1039/C4NR03900ASuche in Google Scholar

[8] A.T.Swesi, J.Masud, M.Nath: Energy Environ. Sci.2016;.10.1039/C5EE02463CSuche in Google Scholar

[9] C.Tang, C.Y.Cheng, Z.H.Pu, W.Xing, X.P.Sun: Angew. Chem. Int. Ed.54 (2015) 9351. 10.1002/anie.201412199Suche in Google Scholar PubMed

[10] B.Dong, B.L.He, J.Huang, G.Y.Gao, Z.Yang, H.L.Li: J. Power Sources175 (2008) 266. 10.1016/j.jpowsour.2007.08.013Suche in Google Scholar

Received: 2016-01-28
Accepted: 2016-02-29
Published Online: 2016-06-05
Published in Print: 2016-06-10

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 20.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111374/html
Button zum nach oben scrollen