Startseite Technik Relaxation and diffusion barriers at step edges of Cu, Ag and Au homo- and heterogeneous systems: Case of (100) facet
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Relaxation and diffusion barriers at step edges of Cu, Ag and Au homo- and heterogeneous systems: Case of (100) facet

  • Mourad Benlattar , Elyakout Elkoraychy , Khalid Sbiaai , M'hammed Mazroui , Yahia Boughaleb und Hicham Gounaya
Veröffentlicht/Copyright: 5. Juni 2016
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Using molecular dynamics simulations based on the embedded atom method, we present the calculations of adsorption and activation energies for the diffusion of adatoms (Cu, Ag or Au) on Cu (100), Ag (100) or Au (100) surfaces with steps. We have also examined the relaxation trends and bond lengths of the adatoms for both fourfold and bridge sites. We note that the vertical distance of the adatom relaxation to the first nearest neighbors is the largest (1.56 %) for Ag on Cu (100) and the shortest (–14.58 %) for Cu on Au (100) as compared to other systems. On the other hand, for Cu on the Au (100) system, we find the adatom barrier for hopping along the step edges to be 0.44 eV, which is the highest for this process among the systems studied here, but the lowest barrier is found for Ag on Cu (100) compared to other systems and costs only 0.20 eV. Attention has also been focused on the evaluations of the adsorption and activation energies for the nine systems in the presence of step edges. The diffusion barriers over and along step edges are interpreted in terms of the cohesive energies of the adatoms and substrates. Moreover, these results can offer some basic rules for forecasting precise atomic surface morphologies in homo- and hetero-epitaxial growth.


*Correspondence address, Professor Mourad Benlattar, Laboratoire de Physique de la Matière Condensée, Faculté des Sciences Ben M'Sik, Université Hassan II, B. P. 7955, Casablanca, Morocco, Tel.: +212 5 22 46 72 70, Fax: +212 5 22 70 46 75, E-mail:

References

[1] G.A.Somorjai: Introduction to surface chemistry and catalysis, Wiley & Sons, New York (1994).10.1007/BF01379568Suche in Google Scholar

[2] T.Zambelli, T.Wintterlin, J.Trost, G.Ertl: Science273 (1996) 1688. 10.1126/science.273.5282.1688Suche in Google Scholar

[3] B.N.J.Persson: Sliding friction: Physical principles and applications, Springer, Berlin, Heidelberg (1998). 10.1007/978-3-662-03646-4Suche in Google Scholar

[4] J.W.Evans, P.A.Thiel, M.C.Bartelt: Surf. Sci. Rep.61 (2006) 1. 10.1016/j.surfrep.2005.08.004.Suche in Google Scholar

[5] R.Fasel, A.Cossy, K.H.Ernst, F.Baumberger, T.Greber, J.Osterwalder: J. Chem. Phys.115 (2001) 1020. 10.1063/1.2194541Suche in Google Scholar

[6] H.Brune: Surf. Sci. Rep.31 (1998) 125. 10.1016/S0167-5729(99)80001-6Suche in Google Scholar

[7] O.Pietzsch, A.Kubetzka, M.Bode, R.Wiesendanger: Phys. Rev. Lett.92 (2004) 057202. 10.1103/PhysRevLett.92.067201Suche in Google Scholar

[8] V.Repain, J.M.Berroir, S.Rousset, J.Lecoeur: Surf. Sci.447L1 (2000) 52. 10.1016/S0039-6028(99)01203-0Suche in Google Scholar

[9] P.Gambardella, M.Blanc, L.Burgi, K.Kuhnke, K.Kern: Surf. Sci.449 (2000) 93. 10.1016/j.susc.2011.02.004Suche in Google Scholar

[10] J.Vrijmoeth, H.A.van der Vegt, J.A.Meyer, E.Vlieg, R.J.Behm: Phys. Rev. Lett.72 (1994) 3843. 10.1103/PhysRevLett.72.3843Suche in Google Scholar PubMed

[11] K.Bromann, H.Brune, H.Roder, K.Kern: Phys. Rev. Lett.75 (1995) 677. 10.1103/PhysRevLett.75.677Suche in Google Scholar PubMed

[12] X.Liu, M.Hupalo, C.Z.Wang, W.C.Lu, A.Patricia, T.Kai-Ming Ho, M.C.Tringides: Phys. Rev.B 86 (2012) 081414. 10.1103/PhysRevB.86.081414Suche in Google Scholar

[13] J.Ellis, J.Ellis: Phys. Rev. Lett.70 (1993) 2118. 10.1103/PhysRevLett.70.2118Suche in Google Scholar PubMed

[14] A.G.Naumovets: PhysicaA 357 (2005) 189. 10.1016/j.physa.2005.06.027Suche in Google Scholar

[15] T.Ala-Nissila, R.Ferrando, S.C.Ying: Adv. Phys.51 (2002) 949. 10.1080/00018730110107902Suche in Google Scholar

[16] H.Oughaddou, B.Aufray, J.P.Bibérian, B.Ealet, G.L.Lay, G.Tréglia, A.Kara, T.S.Rahman: Surf. Sci.602 (2008) 506. 10.1016/j.susc.2007.10.053Suche in Google Scholar

[17] D.Flötotto, Z.M.Wang, L.P.H.Jeurgens, E.Bischoff, E.J.Mittemeijer: J. Appl. Phys.112 (2012) 043503. 10.1063/1.4746739Suche in Google Scholar

[18] S.Durukanoglu, A.Kara, T.S.Rahman: Phys. Rev.B 67 (2003) 235405. 10.1103/PhysRevB.67.205406Suche in Google Scholar

[19] A.Kara, A.Kara: Surf. Sci. Rep.56 (2005) 159187. 10.1016/j.surfrep.2004.09.003Suche in Google Scholar

[20] B.D.Yu, B.D.Yu: Phys. Rev. Lett.77 (1996) 1095. 10.1103/PhysRevLett.77.1095Suche in Google Scholar PubMed

[21] F.Rabbering, H.Wormeester, F.Everts, B.Poelsema: Phys. Rev.B 79 (2009) 075402. 10.1103/PhysRevB.79.075402Suche in Google Scholar

[22] H.Yildirim, H.Yildirim: Phys. Rev.B 80 (2009) 235413. 10.1103/PhysRevB.80.235413Suche in Google Scholar

[23] R.Heid, A.Kara, K.P.Bohnen, T.S.Rahman: Phys. Rev.B 65 (2002) 115405. 10.1103/PhysRevB.65.115405Suche in Google Scholar

[24] A.Karim, T.S.Rahman, M.Rusanen, I.T.Koponen, T.Ala-Nissila: Surf. Sci. Lett554 (2004) L113. 10.1016/j.susc.2003.12.041Suche in Google Scholar

[25] L.Hansen, P.Stoltze, K.W.Jacobsen, J.K.Norskov: Phys. Rev.B 44 (1991) 6523. 10.1103/PhysRevB.44.6523Suche in Google Scholar

[26] G.Boisvert, G.Boisvert: Phys. Rev.B 56 (1997) 7643. 10.1103/PhysRevB.56.7643Suche in Google Scholar

[27] G.Boisvert, L.G.Lewis, M.Puska, R.Nieminen: Phys. Rev.B 52 (1995) 9078. 10.1103/PhysRevB.52.9078Suche in Google Scholar

[28] W.Zhu, F.B.Mongeot, U.Valbusa, E.G.Wang, Z.Zhang: Phys. Rev. Lett.92 (2004) 106102. 10.1103/PhysRevLett.92.106102Suche in Google Scholar PubMed

[29] S.Durukanoğlu, O.S.Trushin, T.S.Rahman: Phys. Rev.B 73 (2006) 125426. 10.1103/PhysRevB.73.125426Suche in Google Scholar

[30] K.Sbiaai, Y.Boughaleb, J.Y.Raty, A.Hajjaji, M.Mazroui, A.Kara: J. Optoelectron. Adv. Mater.14 (2012) 1059.Suche in Google Scholar

[31] E.Elkoraychy, K.Sbiaai, M.Mazroui, Y.Boughaleb, R.Ferrando: Surf. Sci.653 (2015) 69. 10.1016/j.susc.2014.12.009Suche in Google Scholar

[32] M.S.Daw, M.S.Daw: Phys. Rev.B 29 (1984) 6443. 10.1103/PhysRevB.29.6443Suche in Google Scholar

[33] L.Ventelon, L.Ventelon: J. Computer-Aided Mater. Des.14 (2007) 85. 10.1007/s10820–007–9064-ySuche in Google Scholar

[34] C.Mottet, G.Tréglia, B.Legrand: Phys. Rev.B 46 (1992) 16018. 10.1103/PhysRevB.46.16018Suche in Google Scholar

[35] C.Kittel: Introduction to Solid State Physics;Wiley, New York (1997).Suche in Google Scholar

[36] H.Yildirim, S.K.R.S.Sankaranarayznan, J.P.Greeley: J. Phys. Chem.116 (2012) 22475. 10.1021/jp3089275Suche in Google Scholar

[37] V.Fiorentini, M.Methfessel, M.Scheffler: Phys. Rev. Lett.71 (1993) 1051. 10.1103/PhysRevLett.71.1051Suche in Google Scholar PubMed

[38] A.Filippetti, A.Filippetti: Phys. Rev.B 60 (1999) 14366. 10.1103/PhysRevB.60.14366Suche in Google Scholar

[39] O.O.Brovko, N.N.Negulyaev, V.S.Stepanyuk: Phys. Rev.B 82 (2010) 155452. 10.1103/PhysRevB.82.155452Suche in Google Scholar

[40] G.Ehrlich, G.Ehrlich: J. Chem. Phys.44 (1966) 1039. 10.1063/1.1726787Suche in Google Scholar

[41] Y.Mo, W.Zhu, E.Kaxiras, Z.Zhang: Phys. Rev. Lett.101 (2008) 216101. 10.1103/PhysRevLett.101.216101Suche in Google Scholar PubMed

[42] K.Bromann, H.Brune, H.Röder, K.Kern: Phys. Rev. Lett.75 (1995) 677. 10.1103/PhysRevLett.75.677Suche in Google Scholar PubMed

[43] J.E.Prieto, J.de la Figuera, R.Miranda: Phys. Rev.B 62 (2000) 2126. 10.1103/PhysRevB.62.2126Suche in Google Scholar

[44] R.Smoluchowski: Phys. Rev.60 (1941) 661. 10.1103/PhysRev.60.661Suche in Google Scholar

Received: 2015-12-21
Accepted: 2016-02-15
Published Online: 2016-06-05
Published in Print: 2016-06-10

© 2016, Carl Hanser Verlag, München

Heruntergeladen am 20.12.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.111370/html
Button zum nach oben scrollen