Startseite Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts

  • Guiqiang Wang , Yinmin Li und Shuping Zhuo
Veröffentlicht/Copyright: 15. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Ni2O3-modified TiO2 – xNx visible-light photocatalysts have been prepared by the sol-gel method followed by calcining at 450 °C. The photocatalysts were characterized using scanning electron microscopy, thermogravimetry-differential thermal analysis, X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopy. The visible-light photocatalytic activity of the samples was evaluated by decomposition of methylene blue in air under visible-light irradiation (λ > 420 nm). Results revealed that the Ni2O3-modified TiO2 – xNx samples exhibited irregular particle shapes. The crystal phase of Ni2O3-modified TiO2 – xNx samples was anatase. Compared with pure TiO2, the absorption of the Ni2O3-modified TiO2 – xNx samples extends significantly into the visible regions due to the doped N atom in the interstitial sites of the TiO2 lattice. The visible-light photocatalytic activity of Ni2O3-modified TiO2 – xNx samples was improved greatly since the loaded Ni2O3 can facilitate charge transfer.


Correspondence address, Professor Guiqiang Wang The College of Chemical Engineering Shandong University of Technology Zibo 255049, China Tel.: +86 0533 2781 203 Fax: +86 0533 2781 664 E-mail:

References

[1] A.Fujishima, K.Honda: Nature238 (1972) 37. 12635268; 10.1038/238037a0Suche in Google Scholar

[2] A.Fujishima, T.N.Rao, D.A.Tryk: J. Photchem. Photobiol. C: Photochem. Revs.1 (2000) 1.10.1016/S1389-5567(00)00002-2Suche in Google Scholar

[3] S.U.M.Khan, J.Akikusa: Int. J. Hydrogen Energy27 (2002) 863.10.1016/S0360-3199(01)00191-4Suche in Google Scholar

[4] A.Linsebigler, G.Lu, J.T.Yates: Chem. Rev.95 (1995) 735.10.1021/cr00035a013Suche in Google Scholar

[5] T.Umebayashi, T.Yamaki, H.Itoh, K.Asai: J. Phys. Chem. Solids63 (2002) 1909.10.1016/S0022-3697(02)00177-4Suche in Google Scholar

[6] C.C.Chen, X.Z.Li, W.H.Ma, J.C.Zhao: J. Phys. Chem. B106 (2002) 318.10.1021/jp0119025Suche in Google Scholar

[7] H.Yamashita, H.Harada, J.Misaka, M.Anpo: J. Photochem. Photobiol. A: Chem.148 (2002) 257.10.1016/S1010-6030(02)00051-5Suche in Google Scholar

[8] E.Stathatos, T.Petrova, T.Lianos: Langmuir17 (2001) 5025.10.1021/la0103620Suche in Google Scholar

[9] R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki, Y.Taga: Science293 (2001) 269. 11452117; 10.1126/science.1061051Suche in Google Scholar PubMed

[10] S.U.M.Khan, M.Al-Shahry, W.B.Ingler: Science297 (2002) 2243. 12351783; 10.1126/science.1075035Suche in Google Scholar PubMed

[11] S.Sakthivel, H.Kisch: Angewandte Chemie42 (2003) 4908.14579435; 10.1002/anie.200351577Suche in Google Scholar PubMed

[12] C.Burda, Y.Lou, X.Chen, A.C.S.Samia, J.Stout: Nano. Lett.3 (2003) 1049.10.1021/nl034332oSuche in Google Scholar

[13] H.Irie, S.Washizuka, N.Yoshino, K.Hashimoto: Chem. Commun.11 (2003) 1298. 12809239; 10.1039/b302975aSuche in Google Scholar PubMed

[14] H.Irie, Y.Watanabe, K.Hashimoto: J. Phys. Chem. B107 (2003) 5483.10.1021/jp030133hSuche in Google Scholar

[15] C.H.Xu, R.Killmeyer, M.L.Gray, S.U.M.Khan: Appl. Catal. B64 (2006) 312.10.1016/j.apcatb.2005.11.008Suche in Google Scholar

[16] W.K.Ho, J.C.Yu, S.C.Lee: J. Solid State Chem.179 (2006) 1171.10.1016/j.jssc.2006.01.009Suche in Google Scholar

[17] W.Zhao, W.H.Ma, C.C.Chen, J.C.Zhao: J. Am. Chem. Soc.126 (2004) 4782. 15080674; 10.1021/ja0396753Suche in Google Scholar PubMed

[18] Y.Sakatani, H.Ando, K.Okusako, H.Koike, H.Domen: J. Mater. Res.29 (2004) 2100.10.1557/JMR.2004.0269Suche in Google Scholar

[19] Y.Shen, T.Xiong, T.Li, K.Yang: Appl. Catal. B: Environ.83 (208) 177.10.1016/j.apcatb.2008.01.037Suche in Google Scholar

[20] X.Zhang, Q.Liu: Appl. Surf. Sci.254 (2008) 4780.10.1016/j.apsusc.2008.01.094Suche in Google Scholar

[21] N.C.Saha, H.G.Tompkins: J. Appl. Phys.72 (1992) 3072.10.1063/1.351465Suche in Google Scholar

[22] N.D.Shinn, K.L.Tsang: J. Vac. Sci. Technol. A9 (1991) 1558.10.1116/1.577661Suche in Google Scholar

[23] T.Peng, D.Zhao, K.Dai, K.Hirao: J. Phys. Chem. B109 (2005) 4947. 16863152; 10.1021/jp044771rSuche in Google Scholar PubMed

[24] H.Wiame, C.Cellier, P.Grange: J. Canal.109 (2000) 406.Suche in Google Scholar

[25] H.Li, J.Li, Y.Huo: J. Phys. Chem. B110 (2006) 1559.16471715; 10.1021/jp055830jSuche in Google Scholar PubMed

[26] J.L.Gole, J.D.Stout, C.Burda, Y.Lou, X.Chen: J. Phys. Chem. B108 (2004) 1230.10.1021/jp030843nSuche in Google Scholar

[27] S.Sato, R.Nakamura, S.Abe: Appl. Catal. A: General284 (2005) 131.10.1016/j.apcata.2005.01.028Suche in Google Scholar

[28] J.Yang, H.Z.Bai, X.C.Tan, J.S.Lian: Appl. Surf. Sci.253 (2006) 1988.10.1016/j.apsusc.2006.03.078Suche in Google Scholar

[29] J.F.Moulder, W.F.Stickle, P.W.Sobol: Handbook X-ray photoelectron spectroscopy, Perkin-Eler physical division (1992).Suche in Google Scholar

[30] X.Bokhimi, A.Morales, O.Novaro, T.Làpez, O.Chimal, M.Asomoza, R.Gàmez: Chem. Mater.9 (1997) 2616.10.1021/cm970279rSuche in Google Scholar

[31] Z.G.Zhou, J.H.Ye, K.Sayama, H.Arakawa: Nature414 (2001) 625.10.1038/414625aSuche in Google Scholar PubMed

Received: 2008-8-11
Accepted: 2009-4-14
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110272/html
Button zum nach oben scrollen