Home The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
Article
Licensed
Unlicensed Requires Authentication

The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments

  • Javier Pirón Abellán , Tomasz Olszewski , Gerald H. Meier , Lorenz Singheiser and Willem J. Quadakkers
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

In oxyfuel plants metallic heat exchanging components will be subjected to service environments containing high amounts of CO2 and water vapour. In the present paper, the oxidation behaviour of the ferritic/martensitic 9 % Cr steel P92 was studied in a model gas mixture containing 70 % CO2-30 % H2O in the temperature range 550 – 650 °C. The results were compared with the behaviour in air, Ar–CO2 and Ar–H2O. In the CO2- and/or H2O-rich gases, the steel formed iron-rich oxide scales which possess substantially higher growth rates than the Cr-rich surface scales formed during air exposure. The iron-rich oxide scales are formed as a result of a decreased flux of chromium in the bulk alloy toward the surface. This is the result of enhanced internal oxidation of chromium in the H2O-containing gases and carburisation in the CO2 gases. The oxide scales allow molecular transport of CO2 towards the metallic surface, resulting in carburisation of the alloy. The presence of water vapour induced buckling in the outer haematite layer, apparently as a result of compressive oxide growth stresses. Buckling did not occur in the H2O-free gas. This has been discussed in terms of the potential for H2O to increase growth stresses and accelerate crack propagation. The oxidation rates in CO2–H2O do not seem to be higher than those observed in flue gases of conventional fossil fuel fired power plants.


Correspondence address, Dr. Javier Pirón Abellán Forschungszentrum Jülich, IEF-2, Leo Brand Strasse, 52425 Jülich, Germany Tel.: +49 2461 61 6439 Fax: +49 2461 61 3687 E-mail:

References

[1] D.Allen, J.Oakey, B.Scarlin: Materials for Advanced Power Engineering (1998) 1825.Search in Google Scholar

[2] K.Weinzierl: VGB Kraftwerkstechnik74 (2) (1994) 109.Search in Google Scholar

[3] B.J.P.Buhre, L.K.Ellitot, C.D.Sheng, R.P.Gupta, T.F.Wall: Prog. Energy Combust. Sci.31 (2005) 283.10.1016/j.pecs.2005.07.001Search in Google Scholar

[4] K.Jordal, M.Anheden, J.Yan, L.Strömberg, in: M. Wilson, E.S. Rubin, D.W. Keith, C.F. Gilboy, T. Morris, K. Thambimuthu, J. Gale (Eds.), Proceedings of 7th International Conference on Greenhouse Gas Control Technologies (GHGT-7) (2004) 201.Search in Google Scholar

[5] T.Pikkarainen, A.Tourunen, J.Hämäläinen: Energy Materials2 (2007) 78.10.1179/174892407X266644Search in Google Scholar

[6] P.J.Ennis, A.Zielinska-Lipiec, O.Wachter, A.Czyrska-Filemonowicz: Acta Mater.45 (1997) 4901.10.1016/S1359-6454(97)00176-6Search in Google Scholar

[7] P.J.Ennis: Mater. High Temp.23 (2006) 187.10.3184/096034006782739358Search in Google Scholar

[8] J.Zurek, E.Wessel, L.Niewolak, F.Schmitz, T.-U.Kern, L.Singheiser, W.J.Quadakkers: Corros. Sci.46 (2004) 2301.10.1016/j.corsci.2004.01.010Search in Google Scholar

[9] R.J.Ehlers, P.J.Ennis, L.Singheiser, W.J.Quadakkers, T.Link in: M.Schütze, W.J.Quadakkers, J.Nicholls (Eds.), Life Time Modelling of High Temperature Corrosion Processes, European Federation of Corrosion Monograph, 34, The Institute of Materials, London (2001) 178.Search in Google Scholar

[10] W.J.Quadakkers, P.J.Ennis, J.Zurek, M.Michalik: Materials at High Temperatures22 (2005) 47.10.3184/096034005782750590Search in Google Scholar

[11] H.Nickel, Y.Wouters, M.Thiele, W.J.Quadakkers: Fresenius J. Anal. Chem.361 (1998) 540.10.1007/s002160050942Search in Google Scholar

[12] M.Thiele, H.Teichmann, W.Schwarz, W.J.Quadakkers, H.Nickel: VGB Kraftwerkstechnik77 (2) (1997) 135.Search in Google Scholar

[13] G.B.Gibbs: Oxidation of Metals73 (1973) 173.10.1007/BF00610578Search in Google Scholar

[14] H.T.Abuluwefa, R.I.L.Guthrie, F.Ajersch: Metall. Mater. Trans. A28 (1997) 1633.10.1007/s11661-997-0255-7Search in Google Scholar

[15] J.E.Antill, K.A.Peakall, J.B.Warburton: Corros. Sci.8 (1968) 689.10.1016/S0010-938X(68)80103-9Search in Google Scholar

[16] A.Rahmel: Werkstoffe und Korrosion16 (1965) 837.10.1002/maco.19650161002Search in Google Scholar

[17] J.A.Colwell, R.A.Rapp: Metall. Trans. A17 (1986) 1065.10.1007/BF02661273Search in Google Scholar

[18] R.Bredesen, P.Kofstad: Oxid. Met.34 (1990) 361.10.1007/BF00664422Search in Google Scholar

[19] A.Rahmel, J.Tobolski: Werkstoffe und Korrosion16 (1965) 662.10.1002/maco.19650160806Search in Google Scholar

[20] R.J.Ehlers, D.J.Young, E.J.Smaardijk, A.K.Tyagi, H.J.Penkalla, L.Singheiser, W.J.Quadakkers: Corros. Sci.48 (2006) 3428.10.1016/j.corsci.2006.02.002Search in Google Scholar

[21] C.S.Giggins, F.S.Pettit: Oxid. Met.14 (1980) 363.10.1007/BF00603609Search in Google Scholar

[22] G.H.Meier, W.C.Coons, R.A.Perkins: Oxid. Met.17 (1982) 235.10.1007/BF00738385Search in Google Scholar

[23] P.Becker, D.J.Young: Oxid. Met.67 (2007) 267.10.1007/s11085-007-9058-xSearch in Google Scholar

[24] P.J.Ennis, K.P.Mohr, H.Schuster: Journal of Nuclear Technology58 (1984) 363.Search in Google Scholar

[25] R.J.Ehlers, W.J.Quadakkers: Report Forschungszentrum Jülich, Jül-3883, ISSN 0944-2952, Jülich (2001).Search in Google Scholar

[26] M.Thiele, W.J.Quadakkers, F.Schubert, H.Nickel: Report Forschungszentrums Jülich, Jül-3712, ISSN 0944-2952, Jülich (1999).Search in Google Scholar

[27] J.Zurek, L.Nieto Hierro, J. PirànAbellán, L.Niewolak, L.Singheiser, W.J.Quadakkers: Materials Science Forum461–464 (2004) 791.10.4028/www.scientific.net/MSF.461-464.791Search in Google Scholar

[28] P.J.Ennis, W.J.Quadakkers: International Journal of Pressure and Piping84 (2007) 82.10.1016/j.ijpvp.2006.09.008Search in Google Scholar

[29] P.J.Ennis, W.J.Quadakkers: International Journal of Pressure and Piping84 (2007) 75.10.1016/j.ijpvp.2006.09.007Search in Google Scholar

[30] A.Rahmel, J.Tobolski: Corros. Sci.5 (1965) 333.10.1016/S0010-938X(65)90500-7Search in Google Scholar

[31] A.Galerie, Y.Wouters: Mater. Sci. Forum231 (2001) 369.Search in Google Scholar

[32] H.Asteman, J.E.Svensson, L.G.Johansson: Oxid. Met.57 (2002) 193.10.1023/A:1014877600235Search in Google Scholar

[33] M.Schütze, D.Renusch, M.Schorr: Corrosion Engineering, Science and Technology39 (2004) 157.10.1179/147842204225016921Search in Google Scholar

[34] M.Michalik, M.Hänsel, W.J.Quadakkers: Report Forschungszentrums Jülich, Energy Technology, 67, ISSN 1433-5522, Jülich (2007).Search in Google Scholar

[35] I.Langmuir: Phys. Rev.5 (1913) 329.10.1103/PhysRev.2.329Search in Google Scholar

[36] E.Essuman, G.H.Meier, J.Zurek, M.Hänsel, W.J.Quadakkers: Oxid. of Met.69 (2008) 143.10.1007/s11085-007-9090-xSearch in Google Scholar

[37] E.Essuman, G.H.Meier, J.Zurek, M.Hänsel, L.Singheiser, W.J.Quadakkers: Scripta Mater.57 (2007) 845.10.1016/j.scriptamat.2007.06.058Search in Google Scholar

[38] N.Birks, G.H.Meier, F.S.Pettit: Introduction to the High-temperature Oxidation of Metals, Cambridge University Press, Cambridge, UK (2006).10.1017/CBO9781139163903Search in Google Scholar

[39] R.A.Rapp: Acta Met.9 (1961) 730.10.1016/0001-6160(61)90103-1Search in Google Scholar

[40] P.Kofstad: High Temperature Corrosion, Elsevier Applied Science Publishers LTD, London, New York (1988).Search in Google Scholar

[41] C.T.Fujii, R.A.Meussner: J. Electrochem. Soc.114 (1967) 435.10.1149/1.2426622Search in Google Scholar

[42] H.J.Grabke, U.Gravenhorst, W.Steinkusch: Werkstoffe und Korrosion27 (1976) 291.10.1002/maco.19760270502Search in Google Scholar

[43] W.F.Chu, A.Rahmel: Oxid. Met.15 (1981) 331.10.1007/BF01058833Search in Google Scholar

[44] H.E.Evans: Mater. High Temp.22 (2005) 155.10.3184/096034005782750608Search in Google Scholar

[45] S.Osgerby: Mater. High Temp.17 (2000) 307.10.3184/096034000783641009Search in Google Scholar

[46] J.Armitt, D.R.Holmes, M.I.Manning, D.B.Meadowcroft, E.Metcalfe: The spalling of steam-grown oxide from superheater and reheater tube steels, EPRI FP-686, Electric Power Research Institute, Palo Alto, California, U.S.A. (1978).Search in Google Scholar

[47] P.L.Surman, J.E.Castle: Corros. Sci.9 (1969) 771.10.1016/S0010-938X(69)80083-1Search in Google Scholar

[48] W.J.Quadakkers, A.Elschner, W.Speier, H.Nickel: Appl. Surf. Sci.52 (1991) 271.10.1016/0169-4332(91)90069-VSearch in Google Scholar

[49] W.J.Quadakkers, J.F.Norton, S.Canetoli, K.Schuster, A.Gil, in: S.B. Newcomb, J.A. Little (Eds.), 3rd International Conference on Microscopy of Oxidation, Cambridge, UK (1996) 609.Search in Google Scholar

[50] J.Zurek, M.Michalik, F.Schmitz, T.-U.Kern, L.Singheiser, W.J.Quadakkers: Oxid. Met.63 (2005) 401.10.1007/s11085-005-4394-1Search in Google Scholar

[51] N.Nishimura, N.Komai, Y.Hirayama, F.Masuyama: Mater. High Temp.22 (2005) 3.10.3184/096034005782750554Search in Google Scholar

[52] C.Anghel, E.Hörnlund, G.Hultquist, M.Limback: Appl. Surf. Sci.233 (2004) 392.10.1016/j.apsusc.2004.04.001Search in Google Scholar

[53] X.G.Zheng, D.J.Young: Oxid. Met.42 (1994) 163.10.1007/BF01052021Search in Google Scholar

[54] S.M.Wiederhorn: J. Am. Ceram. Soc.50 (1967) 407.10.1111/j.1151-2916.1967.tb15145.xSearch in Google Scholar

[55] S.M.Wiederhorn: Int. J. Fract. Mech.4 (1968) 171177.10.1007/BF00188945Search in Google Scholar

[56] W.B.Hillig, R.J.Charles: High Strength Materials, John Wiley & Sons, New York (1965).Search in Google Scholar

[57] T.A.Michalski, S.W.Freiman: J. Am. Ceram. Soc.66 (1983) 284.10.1111/j.1151-2916.1983.tb15715.xSearch in Google Scholar

[58] T.A.Michalski, S.W.Freiman, B.Bunker: Am. Ceram. Soc. Bull.61 (1982) 414.Search in Google Scholar

[59] R.Janakiraman, G.H.Meier, F.S.Pettit: Metall. Mater. Trans. A30 (1999) 2905.10.1007/s11661-999-0128-3Search in Google Scholar

[60] M.C.Maris-Sida, G.H.Meier, F.S.Pettit: Metall. Mater. Trans. A34 (2003) 2609.10.1007/s11661-003-0020-5Search in Google Scholar

Received: 2008-7-28
Accepted: 2009-3-11
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110271/html
Scroll to top button