Home Technology Graphene metrology and devices
Article
Licensed
Unlicensed Requires Authentication

Graphene metrology and devices

  • Alain C. Diebold and Florence Nelson
Published/Copyright: May 15, 2013

Abstract

The unusual electronic properties of graphene make it a prime candidate material for extending nanoelectronics and designing new types of switches. Graphene's unusual properties are a result of the unusual band structure associated with the hexagonal bonding pattern and the electron/hole transport through the pi orbitals. Graphene samples are frequently more than one layer, or few-layer graphene, and the change in electronic properties with each layer depends on the stacking configuration and the rotational misorientation between the layers. Transport measurements of single layer graphene (SLG) show that graphene exhibits the quantum Hall effect. In addition, Berry Phase corrections to carrier transport measurements are now widely recognized. Because graphene is a single layer of carbon atoms, it is difficult to find, manipulate, and measure. We review the status of physical and electrical characterization of graphene and discuss the remaining challenges. We discuss results from optical microscopy, transmission electron microscopy, low energy electron microscopy, nano-Raman, and several scanned probe methods. Issues such as determination of the number of layers of graphene and rotational stacking misorientation are emphasized.


Correspondence address, Professor Alain C. Diebold College of Nanoscale Science and Engineering University at Albany 255 Fuller Road Albany, NY 12203

References

[1] J.-C.Charlier, X.Blase, S.Roche: Rev. Mod. Phys.79 (2007) 677.10.1103/RevModPhys.79.677Search in Google Scholar

[2] K.I.Bolotin, K.J.Sikes, Z.Jiang, M.Klima, G.Fudenberg, J.Hone, P.Kim, H.L.Stormer: Sol. State Com.146 (2008) 351355.10.1016/j.ssc.2008.02.024Search in Google Scholar

[3] S.Latil, V.Meunier, L.Henrard: Phys. Rev. B76 (2007) 201402.10.1103/PhysRevB.76.201402Search in Google Scholar

[4] M.Aoki, H.Amawashi: Sol. State Com.142 (2007) 123127.10.1016/j.ssc.2007.02.013Search in Google Scholar

[5] M.Y.Han, B.Özyilmaz, Y.Zhang, P.Kim: Phys. Rev. Lett.98 (2007) 206805.10.1103/PhysRevLett.98.206805Search in Google Scholar PubMed

[6] J.U.Lee, P.J.Codella, M.Pietrzykowski: Appl. Phys. Lett.90 (2007) 053103.10.1063/1.2435980Search in Google Scholar

[7] L.Yang, C.-H.Park, Y.-W.Song, M.L.Cohen, S.G.Louie: Phys. Rev. Lett.99(2007) 186801.10.1103/PhysRevLett.99.186801Search in Google Scholar PubMed

[8] A.C.Diebold: Metrology for Emerging Materials, Devices, and Structures: Graphene as an Example, Frontiers of Characterization and Metrology for Nanoelectronics 2009, AIP Conference Proceedings 1173 (2009) 311.10.1063/1.3251256Search in Google Scholar

[9] V.V.Cheianov, V.I.Fal'ko: Phys. Rev. B74 (2006) 041403.10.1103/PhysRevB.74.041403Search in Google Scholar

[10] V.V.Cheianov, V.Fal'ko, B.L.Altshuler: Science315 (2007) 1252.10.1126/science.1138020Search in Google Scholar PubMed

[11] R.Geer, G.Rao: private communication.Search in Google Scholar

[12] P.Blake, E.W.Hill, A.H.Castro Neto, K.S.Novoselov, D.Jiang, R.Yang, T.J.Booth, A.K.Geim: Appl. Phys. Lett.91 (2007) 063124.10.1063/1.2768624Search in Google Scholar

[13] J.C.Meyer, C.O.Girit, M.F.Crommie, A.Zettl: Appl. Phys. Lett.92 (2008) 123110.10.1063/1.2901147Search in Google Scholar

[14] R.R.Nair, P.Blake, A.N.Grigorenko, K.S.Novoselov, T.J.Booth, T.Stauber, N.M.R.Peres, A.K.Geim: Science320 (2008) 1308.10.1126/science.1156965Search in Google Scholar

[15] R.M.Tromp, M.C.Reuter: Ultramicrosc.36 (1991) 99, and R. Tromp, IBM Jour. Res. Dev. 44 (2000) 503.10.1016/0304-3991(91)90141-RSearch in Google Scholar

[16] W.Telieps, E.Bauer: Ultramicrosc.17 (1985) 57.10.1016/0304-3991(85)90177-9Search in Google Scholar

[17] H.Hibino, H.Kageshima, F.Maeda, M.Nagase, Y.Kobayashi, H.Yamaguchi: Phys. Rev. B77 (2008) 075413.10.1103/PhysRevB.77.075413Search in Google Scholar

[18] H.Hibino, H.Kageshima, F.Maeda, M.Nagase, Y.Kobayashi, Y.Kobayashi, H.Yamaguchi, e-J.Surf: Sci. Nanotech.6 (2008) 107110.10.1380/ejssnt.2008.107Search in Google Scholar

[19] K.R.Knox, S.Wang, A.Morgante, D.Cvetko, A.Locatelli, T.O.Mentes, M.A.Niño, P.Kim, R.M.OsgoodJr.: Spectro-microscopy of single and multi-layer graphene supported by a weakly interacting substrate, submitted for publication.Search in Google Scholar

[20] R.Geer: private communication.Search in Google Scholar

[21] I.Calizo, D.Teweldebrhan, W.Bao, F.Miao, N.Lau, A.A.Balandin: Journal of Physics: Conference Series 109 (2008) 012008.10.1088/1742-6596/109/1/012008Search in Google Scholar

[22] P.Poncharal, A.Ayari, T.Michel, J.-L.Sauvajol: Phys. Rev. B78 (2008) 113407.10.1103/PhysRevB.78.113407Search in Google Scholar

[23] J.C.Meyer, C.Kisielowski, R.Erni, M.D.Rossell, M.F.Crommie, A.Zettl: Nano Lett.8 (2008) 35823586. 18563938; 10.1021/nl801386mSearch in Google Scholar PubMed

[24] J.C.Meyer, C.Kisielowski, R.Erni, A.Zettl: EMC 2008 14th European Microscopy Congress, Eds. M.Luysberg, K.Tillmann, T.Weirich, (Springer, New York, 2008) 3738.Search in Google Scholar

[25] F.Nelson, R.Hull, A.C.Diebold: Simulation Study Of Transmission Electron Microscopy Imaging Of Graphene, Proceedings of Characterization and Metrology for Nanoelectronics 2009, AIP Conference Proceedings 1173 (2009) 271274.10.1063/1.3251232Search in Google Scholar

[26] J.H.Warner, M.H.Rummeli, T.Gemming, B.Buchner, A.D.Briggs: Nano Lett.9 (2009) 102106. 19072722 10.1021/nl8025949Search in Google Scholar PubMed

[27] S.Horiuchi, T.Gotou, M.Fujiwara, R.Sotoaka, M.Hirata, K.Kimoto, T.Asaka, T.Yokosawa, Y.Matsui, K.Watanabe, M.Sekita: Jpn. J. Appl. Phys.42 (2003) L1073L 1076.10.1143/JJAP.42.L1073Search in Google Scholar

[28] J.C.Meyer, A.K.Geim, M.I.Katsnelson, K.S.Novoselov, T.J.Booth, S.Roth: Nature446 (2007) 60. 17330039 10.1038/nature05545Search in Google Scholar PubMed

[29] M.H.Gass, U.Bangert, A.L.Bleloch, P.Wang, R.R.Nair, A.K.Geim: Nature Nanotechnology3 (2008).10.1038/nnano.2008.280Search in Google Scholar PubMed

[30] A.Deshpande, W.Bao, F.Miao, C.N.Lau, B.J.LeRoy: online publicationhttp://arxiv.org/abs/0812.1073v1Search in Google Scholar

[31] G.M.Rutter, J.N.Crain, T.Li, P.N.First, J.A.Stroscio: Science317 (2007) 219222. 17626878; 10.1126/science.1142882Search in Google Scholar PubMed

[32] R.Geer: private communication.Search in Google Scholar

[33] J.Martin, N.Akerman, G.Ulbricht, T.Lohmann, J.H.Smet, K.von Klitzing, A.Yacoby: Nature Physics4 (2008) 144148.10.1038/nphys781Search in Google Scholar

[34] V.M.Galitski, S.Adam, S.D.Sarma: arXivUrl: cond-mat/0702117 679Search in Google Scholar

[35] D.Yoshioka: The Quantum Hall Effect, (Springer, New York, 2002).10.1007/978-3-662-05016-3Search in Google Scholar

[36] Y.Zhang, Y.-W.Tan, H.L.Stormer1, P.Kim: Nature438 (2005) 201. 16281031; 10.1038/nature04235Search in Google Scholar PubMed

[37] D.L.Miller, K.D.Kubista, G.M.Rutter, M.Ruan, W.A.de Heer, P.N.First, J.A.Stroscio: Science324 (2009) 924927.19443780; 10.1126/science.1171810Search in Google Scholar PubMed

[38] J.-H.Chen, C.Jang, S.Xiao, M.Ishigami, M.S.Fuhrer: Nature Nanotechnology3 (2008) 298.Search in Google Scholar

[39] S.Cho. M.S.Fuhrer: Phys. Rev. B77 (2008) 081402.10.1103/PhysRevB.77.081402Search in Google Scholar

[40] B.Huard, J.A.Sulpizio, N.Stander, K.Todd, B.Yang, D.Goldhaber-Gordon: Phys. Rev. Lett.98 (2007) 236803. 17677928; 10.1103/PhysRevLett.98.236803Search in Google Scholar PubMed

[41] S.Y.Zhou, G.-H.Gweon, A.V.Fedorov, P.N.First, W.A.de Heer, D.-H.Lee, F.Guinea, A.H.Castro Neto, A.Lanzara: Nature Materials6 (2007) 770, and addendum in Nature Materials 6 (2007) 916.10.1038/nmat2003Search in Google Scholar PubMed

[42] T.Jungwirth, QianNiu, A.H.MacDonald: Phys Rev. Lett.88 (2002) 207208. 12005602, 10.1103/PhysRevLett.88.207208Search in Google Scholar PubMed

[43] A.C.Neto, F.Guinea, N.M.Peres: Drawing Conclusions from Graphene, Physics World Nov. 2006.10.1088/2058-7058/19/11/34Search in Google Scholar

[44] S.Adam, E.H.Hwang, V.M.Galitski, S.Das Sarma: Proc. Amer. Acad. Sci. PNAS104 (2007) 1839218397.10.1073/pnas.0704772104Search in Google Scholar PubMed PubMed Central

[45] S.Tanachutiwat, W.Wang: Exploring Multi-Layer Graphene Nanoribbon Interconnects, NanoNET 2008.10.1007/978-3-642-02427-6_10Search in Google Scholar

[46] T.Ohta, A.Bostwick, T.Seyller, K.Horn, E.Rotenberg: Science313 (2006) 951. 16917057; 10.1126/science.1130681Search in Google Scholar PubMed

[47] A.Bostwick, T.Ohta, T.Seyller, K.Horn, W.Rotenberg: Nature Physics3 (2007) 36.10.1038/nphys477Search in Google Scholar

Received: 2009-6-25
Accepted: 2009-11-27
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Downloaded on 17.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/146.110263/html
Scroll to top button