Home Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
Article
Licensed
Unlicensed Requires Authentication

Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts

  • Guiqiang Wang , Yinmin Li and Shuping Zhuo
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

Ni2O3-modified TiO2 – xNx visible-light photocatalysts have been prepared by the sol-gel method followed by calcining at 450 °C. The photocatalysts were characterized using scanning electron microscopy, thermogravimetry-differential thermal analysis, X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopy. The visible-light photocatalytic activity of the samples was evaluated by decomposition of methylene blue in air under visible-light irradiation (λ > 420 nm). Results revealed that the Ni2O3-modified TiO2 – xNx samples exhibited irregular particle shapes. The crystal phase of Ni2O3-modified TiO2 – xNx samples was anatase. Compared with pure TiO2, the absorption of the Ni2O3-modified TiO2 – xNx samples extends significantly into the visible regions due to the doped N atom in the interstitial sites of the TiO2 lattice. The visible-light photocatalytic activity of Ni2O3-modified TiO2 – xNx samples was improved greatly since the loaded Ni2O3 can facilitate charge transfer.


Correspondence address, Professor Guiqiang Wang The College of Chemical Engineering Shandong University of Technology Zibo 255049, China Tel.: +86 0533 2781 203 Fax: +86 0533 2781 664 E-mail:

References

[1] A.Fujishima, K.Honda: Nature238 (1972) 37. 12635268; 10.1038/238037a0Search in Google Scholar

[2] A.Fujishima, T.N.Rao, D.A.Tryk: J. Photchem. Photobiol. C: Photochem. Revs.1 (2000) 1.10.1016/S1389-5567(00)00002-2Search in Google Scholar

[3] S.U.M.Khan, J.Akikusa: Int. J. Hydrogen Energy27 (2002) 863.10.1016/S0360-3199(01)00191-4Search in Google Scholar

[4] A.Linsebigler, G.Lu, J.T.Yates: Chem. Rev.95 (1995) 735.10.1021/cr00035a013Search in Google Scholar

[5] T.Umebayashi, T.Yamaki, H.Itoh, K.Asai: J. Phys. Chem. Solids63 (2002) 1909.10.1016/S0022-3697(02)00177-4Search in Google Scholar

[6] C.C.Chen, X.Z.Li, W.H.Ma, J.C.Zhao: J. Phys. Chem. B106 (2002) 318.10.1021/jp0119025Search in Google Scholar

[7] H.Yamashita, H.Harada, J.Misaka, M.Anpo: J. Photochem. Photobiol. A: Chem.148 (2002) 257.10.1016/S1010-6030(02)00051-5Search in Google Scholar

[8] E.Stathatos, T.Petrova, T.Lianos: Langmuir17 (2001) 5025.10.1021/la0103620Search in Google Scholar

[9] R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki, Y.Taga: Science293 (2001) 269. 11452117; 10.1126/science.1061051Search in Google Scholar PubMed

[10] S.U.M.Khan, M.Al-Shahry, W.B.Ingler: Science297 (2002) 2243. 12351783; 10.1126/science.1075035Search in Google Scholar PubMed

[11] S.Sakthivel, H.Kisch: Angewandte Chemie42 (2003) 4908.14579435; 10.1002/anie.200351577Search in Google Scholar PubMed

[12] C.Burda, Y.Lou, X.Chen, A.C.S.Samia, J.Stout: Nano. Lett.3 (2003) 1049.10.1021/nl034332oSearch in Google Scholar

[13] H.Irie, S.Washizuka, N.Yoshino, K.Hashimoto: Chem. Commun.11 (2003) 1298. 12809239; 10.1039/b302975aSearch in Google Scholar PubMed

[14] H.Irie, Y.Watanabe, K.Hashimoto: J. Phys. Chem. B107 (2003) 5483.10.1021/jp030133hSearch in Google Scholar

[15] C.H.Xu, R.Killmeyer, M.L.Gray, S.U.M.Khan: Appl. Catal. B64 (2006) 312.10.1016/j.apcatb.2005.11.008Search in Google Scholar

[16] W.K.Ho, J.C.Yu, S.C.Lee: J. Solid State Chem.179 (2006) 1171.10.1016/j.jssc.2006.01.009Search in Google Scholar

[17] W.Zhao, W.H.Ma, C.C.Chen, J.C.Zhao: J. Am. Chem. Soc.126 (2004) 4782. 15080674; 10.1021/ja0396753Search in Google Scholar PubMed

[18] Y.Sakatani, H.Ando, K.Okusako, H.Koike, H.Domen: J. Mater. Res.29 (2004) 2100.10.1557/JMR.2004.0269Search in Google Scholar

[19] Y.Shen, T.Xiong, T.Li, K.Yang: Appl. Catal. B: Environ.83 (208) 177.10.1016/j.apcatb.2008.01.037Search in Google Scholar

[20] X.Zhang, Q.Liu: Appl. Surf. Sci.254 (2008) 4780.10.1016/j.apsusc.2008.01.094Search in Google Scholar

[21] N.C.Saha, H.G.Tompkins: J. Appl. Phys.72 (1992) 3072.10.1063/1.351465Search in Google Scholar

[22] N.D.Shinn, K.L.Tsang: J. Vac. Sci. Technol. A9 (1991) 1558.10.1116/1.577661Search in Google Scholar

[23] T.Peng, D.Zhao, K.Dai, K.Hirao: J. Phys. Chem. B109 (2005) 4947. 16863152; 10.1021/jp044771rSearch in Google Scholar PubMed

[24] H.Wiame, C.Cellier, P.Grange: J. Canal.109 (2000) 406.Search in Google Scholar

[25] H.Li, J.Li, Y.Huo: J. Phys. Chem. B110 (2006) 1559.16471715; 10.1021/jp055830jSearch in Google Scholar PubMed

[26] J.L.Gole, J.D.Stout, C.Burda, Y.Lou, X.Chen: J. Phys. Chem. B108 (2004) 1230.10.1021/jp030843nSearch in Google Scholar

[27] S.Sato, R.Nakamura, S.Abe: Appl. Catal. A: General284 (2005) 131.10.1016/j.apcata.2005.01.028Search in Google Scholar

[28] J.Yang, H.Z.Bai, X.C.Tan, J.S.Lian: Appl. Surf. Sci.253 (2006) 1988.10.1016/j.apsusc.2006.03.078Search in Google Scholar

[29] J.F.Moulder, W.F.Stickle, P.W.Sobol: Handbook X-ray photoelectron spectroscopy, Perkin-Eler physical division (1992).Search in Google Scholar

[30] X.Bokhimi, A.Morales, O.Novaro, T.Làpez, O.Chimal, M.Asomoza, R.Gàmez: Chem. Mater.9 (1997) 2616.10.1021/cm970279rSearch in Google Scholar

[31] Z.G.Zhou, J.H.Ye, K.Sayama, H.Arakawa: Nature414 (2001) 625.10.1038/414625aSearch in Google Scholar PubMed

Received: 2008-8-11
Accepted: 2009-4-14
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Downloaded on 12.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110272/html
Scroll to top button