Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
-
Guiqiang Wang
Abstract
Ni2O3-modified TiO2 – xNx visible-light photocatalysts have been prepared by the sol-gel method followed by calcining at 450 °C. The photocatalysts were characterized using scanning electron microscopy, thermogravimetry-differential thermal analysis, X-ray diffraction, Fourier transform infrared and X-ray photoelectron spectroscopy. The visible-light photocatalytic activity of the samples was evaluated by decomposition of methylene blue in air under visible-light irradiation (λ > 420 nm). Results revealed that the Ni2O3-modified TiO2 – xNx samples exhibited irregular particle shapes. The crystal phase of Ni2O3-modified TiO2 – xNx samples was anatase. Compared with pure TiO2, the absorption of the Ni2O3-modified TiO2 – xNx samples extends significantly into the visible regions due to the doped N atom in the interstitial sites of the TiO2 lattice. The visible-light photocatalytic activity of Ni2O3-modified TiO2 – xNx samples was improved greatly since the loaded Ni2O3 can facilitate charge transfer.
References
[1] A.Fujishima, K.Honda: Nature238 (1972) 37. 12635268; 10.1038/238037a0Search in Google Scholar
[2] A.Fujishima, T.N.Rao, D.A.Tryk: J. Photchem. Photobiol. C: Photochem. Revs.1 (2000) 1.10.1016/S1389-5567(00)00002-2Search in Google Scholar
[3] S.U.M.Khan, J.Akikusa: Int. J. Hydrogen Energy27 (2002) 863.10.1016/S0360-3199(01)00191-4Search in Google Scholar
[4] A.Linsebigler, G.Lu, J.T.Yates: Chem. Rev.95 (1995) 735.10.1021/cr00035a013Search in Google Scholar
[5] T.Umebayashi, T.Yamaki, H.Itoh, K.Asai: J. Phys. Chem. Solids63 (2002) 1909.10.1016/S0022-3697(02)00177-4Search in Google Scholar
[6] C.C.Chen, X.Z.Li, W.H.Ma, J.C.Zhao: J. Phys. Chem. B106 (2002) 318.10.1021/jp0119025Search in Google Scholar
[7] H.Yamashita, H.Harada, J.Misaka, M.Anpo: J. Photochem. Photobiol. A: Chem.148 (2002) 257.10.1016/S1010-6030(02)00051-5Search in Google Scholar
[8] E.Stathatos, T.Petrova, T.Lianos: Langmuir17 (2001) 5025.10.1021/la0103620Search in Google Scholar
[9] R.Asahi, T.Morikawa, T.Ohwaki, K.Aoki, Y.Taga: Science293 (2001) 269. 11452117; 10.1126/science.1061051Search in Google Scholar PubMed
[10] S.U.M.Khan, M.Al-Shahry, W.B.Ingler: Science297 (2002) 2243. 12351783; 10.1126/science.1075035Search in Google Scholar PubMed
[11] S.Sakthivel, H.Kisch: Angewandte Chemie42 (2003) 4908.14579435; 10.1002/anie.200351577Search in Google Scholar PubMed
[12] C.Burda, Y.Lou, X.Chen, A.C.S.Samia, J.Stout: Nano. Lett.3 (2003) 1049.10.1021/nl034332oSearch in Google Scholar
[13] H.Irie, S.Washizuka, N.Yoshino, K.Hashimoto: Chem. Commun.11 (2003) 1298. 12809239; 10.1039/b302975aSearch in Google Scholar PubMed
[14] H.Irie, Y.Watanabe, K.Hashimoto: J. Phys. Chem. B107 (2003) 5483.10.1021/jp030133hSearch in Google Scholar
[15] C.H.Xu, R.Killmeyer, M.L.Gray, S.U.M.Khan: Appl. Catal. B64 (2006) 312.10.1016/j.apcatb.2005.11.008Search in Google Scholar
[16] W.K.Ho, J.C.Yu, S.C.Lee: J. Solid State Chem.179 (2006) 1171.10.1016/j.jssc.2006.01.009Search in Google Scholar
[17] W.Zhao, W.H.Ma, C.C.Chen, J.C.Zhao: J. Am. Chem. Soc.126 (2004) 4782. 15080674; 10.1021/ja0396753Search in Google Scholar PubMed
[18] Y.Sakatani, H.Ando, K.Okusako, H.Koike, H.Domen: J. Mater. Res.29 (2004) 2100.10.1557/JMR.2004.0269Search in Google Scholar
[19] Y.Shen, T.Xiong, T.Li, K.Yang: Appl. Catal. B: Environ.83 (208) 177.10.1016/j.apcatb.2008.01.037Search in Google Scholar
[20] X.Zhang, Q.Liu: Appl. Surf. Sci.254 (2008) 4780.10.1016/j.apsusc.2008.01.094Search in Google Scholar
[21] N.C.Saha, H.G.Tompkins: J. Appl. Phys.72 (1992) 3072.10.1063/1.351465Search in Google Scholar
[22] N.D.Shinn, K.L.Tsang: J. Vac. Sci. Technol. A9 (1991) 1558.10.1116/1.577661Search in Google Scholar
[23] T.Peng, D.Zhao, K.Dai, K.Hirao: J. Phys. Chem. B109 (2005) 4947. 16863152; 10.1021/jp044771rSearch in Google Scholar PubMed
[24] H.Wiame, C.Cellier, P.Grange: J. Canal.109 (2000) 406.Search in Google Scholar
[25] H.Li, J.Li, Y.Huo: J. Phys. Chem. B110 (2006) 1559.16471715; 10.1021/jp055830jSearch in Google Scholar PubMed
[26] J.L.Gole, J.D.Stout, C.Burda, Y.Lou, X.Chen: J. Phys. Chem. B108 (2004) 1230.10.1021/jp030843nSearch in Google Scholar
[27] S.Sato, R.Nakamura, S.Abe: Appl. Catal. A: General284 (2005) 131.10.1016/j.apcata.2005.01.028Search in Google Scholar
[28] J.Yang, H.Z.Bai, X.C.Tan, J.S.Lian: Appl. Surf. Sci.253 (2006) 1988.10.1016/j.apsusc.2006.03.078Search in Google Scholar
[29] J.F.Moulder, W.F.Stickle, P.W.Sobol: Handbook X-ray photoelectron spectroscopy, Perkin-Eler physical division (1992).Search in Google Scholar
[30] X.Bokhimi, A.Morales, O.Novaro, T.Làpez, O.Chimal, M.Asomoza, R.Gàmez: Chem. Mater.9 (1997) 2616.10.1021/cm970279rSearch in Google Scholar
[31] Z.G.Zhou, J.H.Ye, K.Sayama, H.Arakawa: Nature414 (2001) 625.10.1038/414625aSearch in Google Scholar PubMed
© 2010, Carl Hanser Verlag, München
Articles in the same Issue
- Contents
- Contents
- Editorial
- Materials for Information Technology
- Feature
- Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
- Spintronics in metallic superconductor/ferromagnet hybrid structures
- Graphene metrology and devices
- The role of defects in resistively switching chalcogenides
- Materials in optical data storage
- Scaling effects on microstructure and reliability for Cu interconnects
- Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
- Printing materials for electronic devices
- Basic
- Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
- Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
- Capillary equilibrium in a semi-solid Al – Cu slurry
- A comparative study of room-temperature creep in lead-free tin-based solder alloys
- Modeling creep in a thick composite cylinder subjected to internal and external pressures
- Applied
- The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
- Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
- Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
- Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
- Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
- DGM News
- DGM News
Articles in the same Issue
- Contents
- Contents
- Editorial
- Materials for Information Technology
- Feature
- Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
- Spintronics in metallic superconductor/ferromagnet hybrid structures
- Graphene metrology and devices
- The role of defects in resistively switching chalcogenides
- Materials in optical data storage
- Scaling effects on microstructure and reliability for Cu interconnects
- Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
- Printing materials for electronic devices
- Basic
- Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
- Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
- Capillary equilibrium in a semi-solid Al – Cu slurry
- A comparative study of room-temperature creep in lead-free tin-based solder alloys
- Modeling creep in a thick composite cylinder subjected to internal and external pressures
- Applied
- The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
- Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
- Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
- Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
- Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
- DGM News
- DGM News