Home Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
Article
Licensed
Unlicensed Requires Authentication

Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy

  • Y. V. R. K. Prasad , K. P. Rao , N. Hort and K. U. Kainer
Published/Copyright: May 15, 2013
Become an author with De Gruyter Brill

Abstract

The effects of homogenization treatment and high-temperature extrusion on the hot working behavior of Mg-3Sn-1Ca alloy have been studied with a view to find an optimum processing route for the manufacture of wrought products. Processing maps and kinetic parameters have been obtained from the flow stress data recorded in hot compression experiments in the temperature range of 300 – 550 °C and strain rate range of 0.0003 – 10 s– 1. These reveal that the homogenization treatment has only a marginal effect on the hot workability, the result attributable to the high thermal stability of CaMgSn particles in the microstructure. High temperature extrusion, however, lowers the hot working temperature significantly (by about 150 °C) and this has been attributed to grain refinement during primary processing. The mechanisms of hot deformation remained unchanged by the above treatments and the apparent activation energies for hot deformation are higher than those for self-diffusion suggesting that CaMgSn particles in the matrix cause large back-stress.


Correspondence address, Dr. K.P. Rao Department of Manufacturing Engineering City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong Tel.: +852 2788 8409 Fax: +852 2788 8423 E-mail:

References

[1] R.S.Beals, C.Tissington, X.Zhang, K.Kainer, J.Petrillo, M.Verbrugge: J. Metals, 59 (2007) 3942.Search in Google Scholar

[2] K.U.Kainer, H.Dieringa, W.Dietzel, N.Hort, C.Blawert, in: M.O.Pekguleryuz, L.W.F.Mackenzie (Eds.), Magnesium Technology in the Global Age, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 2006, 319.Search in Google Scholar

[3] C.J.Bettles, M.A.Gibson: J. Metals, 57 (2005) 4649.Search in Google Scholar

[4] A.A.Luo: Int. Mater. Rev.49 (2004) 1330.10.1179/095066004225010497Search in Google Scholar

[5] T.Abu Leil, K.P.Rao, N.Hort, C.Blawert, K.U.Kainer, in: A.A.Luo, N.R.Neelameggham, R.S.Beals (Eds.), Magnesium Technology 2006, TMS, Warrendale, Pa.2006, 281286.Search in Google Scholar

[6] H.Liu, Y.Chen, Y.Tang, S.Wei, G.Niu: J. Alloys. Compds.440 (2007) 122126.10.1016/j.jallcom.2006.09.024Search in Google Scholar

[7] Y.Chino, L.Jaeseol, Y.Nakaura, K.Ohori, M.Mabuchi: Mater. Trans. Japan46 (2005) 25922595.10.2320/matertrans.46.2592Search in Google Scholar

[8] S.Akiyama, H.Ueno, M.Sakamoto, H.Hirai, A.Kitahara: Materia Japan39 (2000) 7274.10.2320/materia.39.72Search in Google Scholar

[9] T.Abi Leil, N.Hort, H.Dieringa, C.Blawert, Y.Huang, K.U.Kainer, K.P.Rao, in: M.O.Pekguleryuz, L.W.F.Mackenzie (Eds.), Magnesium Technology in the Global Age, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 2006, 739749.Search in Google Scholar

[10] N.Hort, Y.Huang, T.Abu Leil, P.Maier, K.U.Kainer: Adv. Eng. Mater.8 (2006) 359364.10.1002/adem.200600014Search in Google Scholar

[11] T.Abu Leil, Y.Huang, H.Dieringa, N.Hort, K.U.Kainer, J.Bursik, Y.Jiraskova, K.P.Rao: Mater. Sci. For.546–549 (2007) 6972.10.4028/www.scientific.net/MSF.546-549.69Search in Google Scholar

[12] K.P.Rao, Y.V.R.K.Prasad, N.Hort, K.U.Kainer: Key Eng. Mater.340–341 (2007) 8994.10.4028/www.scientific.net/KEM.340-341.89Search in Google Scholar

[13] K.P.Rao, Y.V.R.K.Prasad, N.Hort, K.U.Kainer: J. Mater. Proc. Tech.201 (2008) 359363.10.1016/j.jmatprotec.2007.11.148Search in Google Scholar

[14] Y.V.R.K.Prasad, T.Seshacharyulu: Inter. Mater. Rev.43 (1998) 243258.10.1179/095066098790105618Search in Google Scholar

[15] Y.V.R.K.Prasad, S.Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, OH, 1997.Search in Google Scholar

[16] Y.V.R.K.Prasad: J. Mater. Eng. Perfor.12 (2003) 638645.10.1361/105994903322692420Search in Google Scholar

[17] H.Ziegler, in: I.N.Sneddon, R.Hill (Eds.), Progress in Solid Mechanics, John Wiley, New York, 4, 1965, 91193.Search in Google Scholar

[18] Y.Wang, Y.Zhang, X.Zeng, W.Ding: J. Mater. Sci.41 (2006) 36033608.10.1007/s10853-005-5564-xSearch in Google Scholar

[19] O.Sivakesavam, I.S.Rao, Y.V.R.K.Prasad: Mater. Sci. Tech.9 (1993) 805810.Search in Google Scholar

[20] O.Sivakesavam, Y.V.R.K.Prasad: Mater. Sci. Eng. A362 (2003) 118124.10.1016/S0921-5093(03)00296-XSearch in Google Scholar

[21] J.Dzwonczyk, Y.V.R.K.Prasad, N.Hort, K.U.Kainer: Adv. Eng. Mater.8 (2006) 966973.10.1002/adem.200600027Search in Google Scholar

[22] J.J.Jonas, C.M.Sellars, W.J. McG.Tegart: Metall. Rev.14 (1969) 124.10.1179/095066069790138056Search in Google Scholar

[23] Y.V.R.K.Prasad, K.P.Rao: Mater. Sci. Eng. A391 (2005) 141150.10.1016/j.msea.2004.08.049Search in Google Scholar

[24] Y.V.R.K.Prasad, K.P.Rao, N.Hort, K.U.Kainer: Mater. Sci. Eng. A502, (2009) 2531.10.1016/j.msea.2008.10.041Search in Google Scholar

[25] H.J.Frost, M.F.Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, 44.Search in Google Scholar

[26] T.Balakrishna Bhat, V.S.Arunachalam: J. Mater. Sci.12 (1977) 22412245.10.1007/BF00552246Search in Google Scholar

[27] Y.V.R.K.Prasad, K.P.Rao: Adv. Eng. Mater.9 (2007) 558565.10.1002/adem.200700002Search in Google Scholar

[28] N.Balasubramanian, J.C.M.Li: J. Mater. Sci.5 (1970) 434442.10.1007/BF00550006Search in Google Scholar

[29] D.H.Sastry: Mater. Sci. Eng. A409 (2005) 6775.10.1016/j.msea.2005.05.110Search in Google Scholar

[30] R.C.Hilborn: Chaos and Non-Linear Dynamics, Oxford University Press, New York and Oxford, 1994.Search in Google Scholar

[31] I.Prigogine: Science201 (1978) 777787. 17738519; 10.1126/science.201.4358.777Search in Google Scholar PubMed

Received: 2008-7-14
Accepted: 2009-3-11
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Articles in the same Issue

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Downloaded on 11.10.2025 from https://www.degruyterbrill.com/document/doi/10.3139/146.110269/html
Scroll to top button