Startseite Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy

  • Y. V. R. K. Prasad , K. P. Rao , N. Hort und K. U. Kainer
Veröffentlicht/Copyright: 15. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The effects of homogenization treatment and high-temperature extrusion on the hot working behavior of Mg-3Sn-1Ca alloy have been studied with a view to find an optimum processing route for the manufacture of wrought products. Processing maps and kinetic parameters have been obtained from the flow stress data recorded in hot compression experiments in the temperature range of 300 – 550 °C and strain rate range of 0.0003 – 10 s– 1. These reveal that the homogenization treatment has only a marginal effect on the hot workability, the result attributable to the high thermal stability of CaMgSn particles in the microstructure. High temperature extrusion, however, lowers the hot working temperature significantly (by about 150 °C) and this has been attributed to grain refinement during primary processing. The mechanisms of hot deformation remained unchanged by the above treatments and the apparent activation energies for hot deformation are higher than those for self-diffusion suggesting that CaMgSn particles in the matrix cause large back-stress.


Correspondence address, Dr. K.P. Rao Department of Manufacturing Engineering City University of Hong Kong Tat Chee Avenue, Kowloon, Hong Kong Tel.: +852 2788 8409 Fax: +852 2788 8423 E-mail:

References

[1] R.S.Beals, C.Tissington, X.Zhang, K.Kainer, J.Petrillo, M.Verbrugge: J. Metals, 59 (2007) 3942.Suche in Google Scholar

[2] K.U.Kainer, H.Dieringa, W.Dietzel, N.Hort, C.Blawert, in: M.O.Pekguleryuz, L.W.F.Mackenzie (Eds.), Magnesium Technology in the Global Age, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 2006, 319.Suche in Google Scholar

[3] C.J.Bettles, M.A.Gibson: J. Metals, 57 (2005) 4649.Suche in Google Scholar

[4] A.A.Luo: Int. Mater. Rev.49 (2004) 1330.10.1179/095066004225010497Suche in Google Scholar

[5] T.Abu Leil, K.P.Rao, N.Hort, C.Blawert, K.U.Kainer, in: A.A.Luo, N.R.Neelameggham, R.S.Beals (Eds.), Magnesium Technology 2006, TMS, Warrendale, Pa.2006, 281286.Suche in Google Scholar

[6] H.Liu, Y.Chen, Y.Tang, S.Wei, G.Niu: J. Alloys. Compds.440 (2007) 122126.10.1016/j.jallcom.2006.09.024Suche in Google Scholar

[7] Y.Chino, L.Jaeseol, Y.Nakaura, K.Ohori, M.Mabuchi: Mater. Trans. Japan46 (2005) 25922595.10.2320/matertrans.46.2592Suche in Google Scholar

[8] S.Akiyama, H.Ueno, M.Sakamoto, H.Hirai, A.Kitahara: Materia Japan39 (2000) 7274.10.2320/materia.39.72Suche in Google Scholar

[9] T.Abi Leil, N.Hort, H.Dieringa, C.Blawert, Y.Huang, K.U.Kainer, K.P.Rao, in: M.O.Pekguleryuz, L.W.F.Mackenzie (Eds.), Magnesium Technology in the Global Age, Canadian Institute of Mining, Metallurgy and Petroleum, Montreal, Canada, 2006, 739749.Suche in Google Scholar

[10] N.Hort, Y.Huang, T.Abu Leil, P.Maier, K.U.Kainer: Adv. Eng. Mater.8 (2006) 359364.10.1002/adem.200600014Suche in Google Scholar

[11] T.Abu Leil, Y.Huang, H.Dieringa, N.Hort, K.U.Kainer, J.Bursik, Y.Jiraskova, K.P.Rao: Mater. Sci. For.546–549 (2007) 6972.10.4028/www.scientific.net/MSF.546-549.69Suche in Google Scholar

[12] K.P.Rao, Y.V.R.K.Prasad, N.Hort, K.U.Kainer: Key Eng. Mater.340–341 (2007) 8994.10.4028/www.scientific.net/KEM.340-341.89Suche in Google Scholar

[13] K.P.Rao, Y.V.R.K.Prasad, N.Hort, K.U.Kainer: J. Mater. Proc. Tech.201 (2008) 359363.10.1016/j.jmatprotec.2007.11.148Suche in Google Scholar

[14] Y.V.R.K.Prasad, T.Seshacharyulu: Inter. Mater. Rev.43 (1998) 243258.10.1179/095066098790105618Suche in Google Scholar

[15] Y.V.R.K.Prasad, S.Sasidhara: Hot Working Guide: A Compendium of Processing Maps, ASM International, Materials Park, OH, 1997.Suche in Google Scholar

[16] Y.V.R.K.Prasad: J. Mater. Eng. Perfor.12 (2003) 638645.10.1361/105994903322692420Suche in Google Scholar

[17] H.Ziegler, in: I.N.Sneddon, R.Hill (Eds.), Progress in Solid Mechanics, John Wiley, New York, 4, 1965, 91193.Suche in Google Scholar

[18] Y.Wang, Y.Zhang, X.Zeng, W.Ding: J. Mater. Sci.41 (2006) 36033608.10.1007/s10853-005-5564-xSuche in Google Scholar

[19] O.Sivakesavam, I.S.Rao, Y.V.R.K.Prasad: Mater. Sci. Tech.9 (1993) 805810.Suche in Google Scholar

[20] O.Sivakesavam, Y.V.R.K.Prasad: Mater. Sci. Eng. A362 (2003) 118124.10.1016/S0921-5093(03)00296-XSuche in Google Scholar

[21] J.Dzwonczyk, Y.V.R.K.Prasad, N.Hort, K.U.Kainer: Adv. Eng. Mater.8 (2006) 966973.10.1002/adem.200600027Suche in Google Scholar

[22] J.J.Jonas, C.M.Sellars, W.J. McG.Tegart: Metall. Rev.14 (1969) 124.10.1179/095066069790138056Suche in Google Scholar

[23] Y.V.R.K.Prasad, K.P.Rao: Mater. Sci. Eng. A391 (2005) 141150.10.1016/j.msea.2004.08.049Suche in Google Scholar

[24] Y.V.R.K.Prasad, K.P.Rao, N.Hort, K.U.Kainer: Mater. Sci. Eng. A502, (2009) 2531.10.1016/j.msea.2008.10.041Suche in Google Scholar

[25] H.J.Frost, M.F.Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982, 44.Suche in Google Scholar

[26] T.Balakrishna Bhat, V.S.Arunachalam: J. Mater. Sci.12 (1977) 22412245.10.1007/BF00552246Suche in Google Scholar

[27] Y.V.R.K.Prasad, K.P.Rao: Adv. Eng. Mater.9 (2007) 558565.10.1002/adem.200700002Suche in Google Scholar

[28] N.Balasubramanian, J.C.M.Li: J. Mater. Sci.5 (1970) 434442.10.1007/BF00550006Suche in Google Scholar

[29] D.H.Sastry: Mater. Sci. Eng. A409 (2005) 6775.10.1016/j.msea.2005.05.110Suche in Google Scholar

[30] R.C.Hilborn: Chaos and Non-Linear Dynamics, Oxford University Press, New York and Oxford, 1994.Suche in Google Scholar

[31] I.Prigogine: Science201 (1978) 777787. 17738519; 10.1126/science.201.4358.777Suche in Google Scholar PubMed

Received: 2008-7-14
Accepted: 2009-3-11
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110269/html
Button zum nach oben scrollen