Startseite The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments

  • Javier Pirón Abellán , Tomasz Olszewski , Gerald H. Meier , Lorenz Singheiser und Willem J. Quadakkers
Veröffentlicht/Copyright: 15. Mai 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In oxyfuel plants metallic heat exchanging components will be subjected to service environments containing high amounts of CO2 and water vapour. In the present paper, the oxidation behaviour of the ferritic/martensitic 9 % Cr steel P92 was studied in a model gas mixture containing 70 % CO2-30 % H2O in the temperature range 550 – 650 °C. The results were compared with the behaviour in air, Ar–CO2 and Ar–H2O. In the CO2- and/or H2O-rich gases, the steel formed iron-rich oxide scales which possess substantially higher growth rates than the Cr-rich surface scales formed during air exposure. The iron-rich oxide scales are formed as a result of a decreased flux of chromium in the bulk alloy toward the surface. This is the result of enhanced internal oxidation of chromium in the H2O-containing gases and carburisation in the CO2 gases. The oxide scales allow molecular transport of CO2 towards the metallic surface, resulting in carburisation of the alloy. The presence of water vapour induced buckling in the outer haematite layer, apparently as a result of compressive oxide growth stresses. Buckling did not occur in the H2O-free gas. This has been discussed in terms of the potential for H2O to increase growth stresses and accelerate crack propagation. The oxidation rates in CO2–H2O do not seem to be higher than those observed in flue gases of conventional fossil fuel fired power plants.


Correspondence address, Dr. Javier Pirón Abellán Forschungszentrum Jülich, IEF-2, Leo Brand Strasse, 52425 Jülich, Germany Tel.: +49 2461 61 6439 Fax: +49 2461 61 3687 E-mail:

References

[1] D.Allen, J.Oakey, B.Scarlin: Materials for Advanced Power Engineering (1998) 1825.Suche in Google Scholar

[2] K.Weinzierl: VGB Kraftwerkstechnik74 (2) (1994) 109.Suche in Google Scholar

[3] B.J.P.Buhre, L.K.Ellitot, C.D.Sheng, R.P.Gupta, T.F.Wall: Prog. Energy Combust. Sci.31 (2005) 283.10.1016/j.pecs.2005.07.001Suche in Google Scholar

[4] K.Jordal, M.Anheden, J.Yan, L.Strömberg, in: M. Wilson, E.S. Rubin, D.W. Keith, C.F. Gilboy, T. Morris, K. Thambimuthu, J. Gale (Eds.), Proceedings of 7th International Conference on Greenhouse Gas Control Technologies (GHGT-7) (2004) 201.Suche in Google Scholar

[5] T.Pikkarainen, A.Tourunen, J.Hämäläinen: Energy Materials2 (2007) 78.10.1179/174892407X266644Suche in Google Scholar

[6] P.J.Ennis, A.Zielinska-Lipiec, O.Wachter, A.Czyrska-Filemonowicz: Acta Mater.45 (1997) 4901.10.1016/S1359-6454(97)00176-6Suche in Google Scholar

[7] P.J.Ennis: Mater. High Temp.23 (2006) 187.10.3184/096034006782739358Suche in Google Scholar

[8] J.Zurek, E.Wessel, L.Niewolak, F.Schmitz, T.-U.Kern, L.Singheiser, W.J.Quadakkers: Corros. Sci.46 (2004) 2301.10.1016/j.corsci.2004.01.010Suche in Google Scholar

[9] R.J.Ehlers, P.J.Ennis, L.Singheiser, W.J.Quadakkers, T.Link in: M.Schütze, W.J.Quadakkers, J.Nicholls (Eds.), Life Time Modelling of High Temperature Corrosion Processes, European Federation of Corrosion Monograph, 34, The Institute of Materials, London (2001) 178.Suche in Google Scholar

[10] W.J.Quadakkers, P.J.Ennis, J.Zurek, M.Michalik: Materials at High Temperatures22 (2005) 47.10.3184/096034005782750590Suche in Google Scholar

[11] H.Nickel, Y.Wouters, M.Thiele, W.J.Quadakkers: Fresenius J. Anal. Chem.361 (1998) 540.10.1007/s002160050942Suche in Google Scholar

[12] M.Thiele, H.Teichmann, W.Schwarz, W.J.Quadakkers, H.Nickel: VGB Kraftwerkstechnik77 (2) (1997) 135.Suche in Google Scholar

[13] G.B.Gibbs: Oxidation of Metals73 (1973) 173.10.1007/BF00610578Suche in Google Scholar

[14] H.T.Abuluwefa, R.I.L.Guthrie, F.Ajersch: Metall. Mater. Trans. A28 (1997) 1633.10.1007/s11661-997-0255-7Suche in Google Scholar

[15] J.E.Antill, K.A.Peakall, J.B.Warburton: Corros. Sci.8 (1968) 689.10.1016/S0010-938X(68)80103-9Suche in Google Scholar

[16] A.Rahmel: Werkstoffe und Korrosion16 (1965) 837.10.1002/maco.19650161002Suche in Google Scholar

[17] J.A.Colwell, R.A.Rapp: Metall. Trans. A17 (1986) 1065.10.1007/BF02661273Suche in Google Scholar

[18] R.Bredesen, P.Kofstad: Oxid. Met.34 (1990) 361.10.1007/BF00664422Suche in Google Scholar

[19] A.Rahmel, J.Tobolski: Werkstoffe und Korrosion16 (1965) 662.10.1002/maco.19650160806Suche in Google Scholar

[20] R.J.Ehlers, D.J.Young, E.J.Smaardijk, A.K.Tyagi, H.J.Penkalla, L.Singheiser, W.J.Quadakkers: Corros. Sci.48 (2006) 3428.10.1016/j.corsci.2006.02.002Suche in Google Scholar

[21] C.S.Giggins, F.S.Pettit: Oxid. Met.14 (1980) 363.10.1007/BF00603609Suche in Google Scholar

[22] G.H.Meier, W.C.Coons, R.A.Perkins: Oxid. Met.17 (1982) 235.10.1007/BF00738385Suche in Google Scholar

[23] P.Becker, D.J.Young: Oxid. Met.67 (2007) 267.10.1007/s11085-007-9058-xSuche in Google Scholar

[24] P.J.Ennis, K.P.Mohr, H.Schuster: Journal of Nuclear Technology58 (1984) 363.Suche in Google Scholar

[25] R.J.Ehlers, W.J.Quadakkers: Report Forschungszentrum Jülich, Jül-3883, ISSN 0944-2952, Jülich (2001).Suche in Google Scholar

[26] M.Thiele, W.J.Quadakkers, F.Schubert, H.Nickel: Report Forschungszentrums Jülich, Jül-3712, ISSN 0944-2952, Jülich (1999).Suche in Google Scholar

[27] J.Zurek, L.Nieto Hierro, J. PirànAbellán, L.Niewolak, L.Singheiser, W.J.Quadakkers: Materials Science Forum461–464 (2004) 791.10.4028/www.scientific.net/MSF.461-464.791Suche in Google Scholar

[28] P.J.Ennis, W.J.Quadakkers: International Journal of Pressure and Piping84 (2007) 82.10.1016/j.ijpvp.2006.09.008Suche in Google Scholar

[29] P.J.Ennis, W.J.Quadakkers: International Journal of Pressure and Piping84 (2007) 75.10.1016/j.ijpvp.2006.09.007Suche in Google Scholar

[30] A.Rahmel, J.Tobolski: Corros. Sci.5 (1965) 333.10.1016/S0010-938X(65)90500-7Suche in Google Scholar

[31] A.Galerie, Y.Wouters: Mater. Sci. Forum231 (2001) 369.Suche in Google Scholar

[32] H.Asteman, J.E.Svensson, L.G.Johansson: Oxid. Met.57 (2002) 193.10.1023/A:1014877600235Suche in Google Scholar

[33] M.Schütze, D.Renusch, M.Schorr: Corrosion Engineering, Science and Technology39 (2004) 157.10.1179/147842204225016921Suche in Google Scholar

[34] M.Michalik, M.Hänsel, W.J.Quadakkers: Report Forschungszentrums Jülich, Energy Technology, 67, ISSN 1433-5522, Jülich (2007).Suche in Google Scholar

[35] I.Langmuir: Phys. Rev.5 (1913) 329.10.1103/PhysRev.2.329Suche in Google Scholar

[36] E.Essuman, G.H.Meier, J.Zurek, M.Hänsel, W.J.Quadakkers: Oxid. of Met.69 (2008) 143.10.1007/s11085-007-9090-xSuche in Google Scholar

[37] E.Essuman, G.H.Meier, J.Zurek, M.Hänsel, L.Singheiser, W.J.Quadakkers: Scripta Mater.57 (2007) 845.10.1016/j.scriptamat.2007.06.058Suche in Google Scholar

[38] N.Birks, G.H.Meier, F.S.Pettit: Introduction to the High-temperature Oxidation of Metals, Cambridge University Press, Cambridge, UK (2006).10.1017/CBO9781139163903Suche in Google Scholar

[39] R.A.Rapp: Acta Met.9 (1961) 730.10.1016/0001-6160(61)90103-1Suche in Google Scholar

[40] P.Kofstad: High Temperature Corrosion, Elsevier Applied Science Publishers LTD, London, New York (1988).Suche in Google Scholar

[41] C.T.Fujii, R.A.Meussner: J. Electrochem. Soc.114 (1967) 435.10.1149/1.2426622Suche in Google Scholar

[42] H.J.Grabke, U.Gravenhorst, W.Steinkusch: Werkstoffe und Korrosion27 (1976) 291.10.1002/maco.19760270502Suche in Google Scholar

[43] W.F.Chu, A.Rahmel: Oxid. Met.15 (1981) 331.10.1007/BF01058833Suche in Google Scholar

[44] H.E.Evans: Mater. High Temp.22 (2005) 155.10.3184/096034005782750608Suche in Google Scholar

[45] S.Osgerby: Mater. High Temp.17 (2000) 307.10.3184/096034000783641009Suche in Google Scholar

[46] J.Armitt, D.R.Holmes, M.I.Manning, D.B.Meadowcroft, E.Metcalfe: The spalling of steam-grown oxide from superheater and reheater tube steels, EPRI FP-686, Electric Power Research Institute, Palo Alto, California, U.S.A. (1978).Suche in Google Scholar

[47] P.L.Surman, J.E.Castle: Corros. Sci.9 (1969) 771.10.1016/S0010-938X(69)80083-1Suche in Google Scholar

[48] W.J.Quadakkers, A.Elschner, W.Speier, H.Nickel: Appl. Surf. Sci.52 (1991) 271.10.1016/0169-4332(91)90069-VSuche in Google Scholar

[49] W.J.Quadakkers, J.F.Norton, S.Canetoli, K.Schuster, A.Gil, in: S.B. Newcomb, J.A. Little (Eds.), 3rd International Conference on Microscopy of Oxidation, Cambridge, UK (1996) 609.Suche in Google Scholar

[50] J.Zurek, M.Michalik, F.Schmitz, T.-U.Kern, L.Singheiser, W.J.Quadakkers: Oxid. Met.63 (2005) 401.10.1007/s11085-005-4394-1Suche in Google Scholar

[51] N.Nishimura, N.Komai, Y.Hirayama, F.Masuyama: Mater. High Temp.22 (2005) 3.10.3184/096034005782750554Suche in Google Scholar

[52] C.Anghel, E.Hörnlund, G.Hultquist, M.Limback: Appl. Surf. Sci.233 (2004) 392.10.1016/j.apsusc.2004.04.001Suche in Google Scholar

[53] X.G.Zheng, D.J.Young: Oxid. Met.42 (1994) 163.10.1007/BF01052021Suche in Google Scholar

[54] S.M.Wiederhorn: J. Am. Ceram. Soc.50 (1967) 407.10.1111/j.1151-2916.1967.tb15145.xSuche in Google Scholar

[55] S.M.Wiederhorn: Int. J. Fract. Mech.4 (1968) 171177.10.1007/BF00188945Suche in Google Scholar

[56] W.B.Hillig, R.J.Charles: High Strength Materials, John Wiley & Sons, New York (1965).Suche in Google Scholar

[57] T.A.Michalski, S.W.Freiman: J. Am. Ceram. Soc.66 (1983) 284.10.1111/j.1151-2916.1983.tb15715.xSuche in Google Scholar

[58] T.A.Michalski, S.W.Freiman, B.Bunker: Am. Ceram. Soc. Bull.61 (1982) 414.Suche in Google Scholar

[59] R.Janakiraman, G.H.Meier, F.S.Pettit: Metall. Mater. Trans. A30 (1999) 2905.10.1007/s11661-999-0128-3Suche in Google Scholar

[60] M.C.Maris-Sida, G.H.Meier, F.S.Pettit: Metall. Mater. Trans. A34 (2003) 2609.10.1007/s11661-003-0020-5Suche in Google Scholar

Received: 2008-7-28
Accepted: 2009-3-11
Published Online: 2013-05-15
Published in Print: 2010-02-01

© 2010, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Contents
  2. Contents
  3. Editorial
  4. Materials for Information Technology
  5. Feature
  6. Advanced high-k/metal gate stack progress and challenges – a materials and process integration perspective
  7. Spintronics in metallic superconductor/ferromagnet hybrid structures
  8. Graphene metrology and devices
  9. The role of defects in resistively switching chalcogenides
  10. Materials in optical data storage
  11. Scaling effects on microstructure and reliability for Cu interconnects
  12. Effects of e-beam curing on glass structureand mechanical properties of nanoporous organosilicate thin films
  13. Printing materials for electronic devices
  14. Basic
  15. Characterisation of lead – calcium alloys ageing in anisothermal conditions by calorimetric, resistance and hardness in-situ measurements
  16. Thermodynamic predictions of Mg – Al – Ca alloy compositions amenable to semi-solid forming
  17. Capillary equilibrium in a semi-solid Al – Cu slurry
  18. A comparative study of room-temperature creep in lead-free tin-based solder alloys
  19. Modeling creep in a thick composite cylinder subjected to internal and external pressures
  20. Applied
  21. The oxidation behaviour of the 9 % Cr steel P92in CO2- and H2O-rich gases relevant to oxyfuel environments
  22. Effect of thermal and mechanical treatments on the hot working response of Mg-3Sn-1Ca alloy
  23. Structure and mechanical properties of an AlCr6Fe2Ti1 alloy produced by rapid solidification powder metallurgy method
  24. Ni2O3-modified TiO2 – xNx as efficientvisible-light photocatalysts
  25. Dependence of optical, structural and electrical properties of ZnxCd1–xS thin films prepared by co-evaporation on the composition for x = 0 – 1
  26. DGM News
  27. DGM News
Heruntergeladen am 12.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/146.110271/html
Button zum nach oben scrollen