Startseite Technik Investigations on multi-run metal made of HSLA steel – Heterogeneous microstructure and mechanical properties
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigations on multi-run metal made of HSLA steel – Heterogeneous microstructure and mechanical properties

  • Mir Mostafa Hosseinioun , Ghazal Moeini , Casten Konke und Ali Tahaei
Veröffentlicht/Copyright: 10. Juli 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Multi-run high strength low alloy (HSLA) steel plates welded by manual metal arc (MMA) process were investigated. Heterogeneous weld metal microstructure was studied accompanied with its effect on the mechanical properties of the joint. Microstructural studies revealed: (1) in the last run, there were intergranular acicular ferrite and pro-eutectoid ferrite, (2) in previous weld runs, there were refined grains with precipitated particles and (3) in the interlayer region of previous runs, there were some heterogeneous ferrite grains, grain boundary discontinuities and precipitated microalloying elements. In the last run, in fusion zone weld and heat affected zone interface, the solidification is a phenomenon of an epitaxial growth type structure. However, in previous weld runs, there was neither epitaxial growth nor typical refined grain structure. The mechanical properties varied in different parts of the welded plate due to the metallurgical characteristics of weld metal in comparison with the production procedure of HSLA steels and their metallurgical parameters.

Kurzfassung

Es wurden Bleche aus hochfestem niedriglegierten Stahl (HSLA) untersucht, die mit manuellem Lichtbogenschweißen mehrlagig geschweißt wurden. Das heterogene Gefüge der Schweißnaht wurde hinsichtlich ihrer Wirkung auf die mechanischen Eigenschaften der Verbindung untersucht. Die Studien der Mikrostruktur zeigten, dass: (1) in der letzten Schweißlage intergranularer Nadelferrit und pro-eutektoider Ferrit auftritt, (2) in den zuerst eingebrachten Schweißlagen verfeinerte Körner mit ausgeschiedenen Partikeln vorliegen und (3) im Bereich der Zwischenschicht der zuvor eingebrachten Schweißlagen einige heterogene Ferritkörner, Korngrenzen-Diskontinuitäten und ausgeschiedene Mikrolegierungselemente vorhanden sind. In der Schmelz- und Wärmeeinflusszone der letzten Lage ist eine epitaktische Wachstumsstruktur vorhanden. In den ersten Schweißlagen gab es jedoch weder epitaktisches Wachstum noch eine typisch verfeinerte Kornstruktur. Die mechanischen Eigenschaften variierten in verschiedenen Bereichen der geschweißten Bleche aufgrund der metallurgischen Eigenschaften des Schweißgutes im Vergleich zum Herstellungsverfahren der HSLA-Stähle und ihren metallurgischen Parametern.


*Correspondence Address, Prof. M. M. Hosseinioun, Amirkabir University of Technology, Department of Marine engineering, Polytechnic, Tehran, Iran, E-mail:

Prof. Mir Mostafa Hosseinioun, born in 1947, received his Master's degree in Welding Metallurgy (CNAA UK) from the Metallurgy Department, London City Polytechnic, UK and his doctorate in Materials Technology (PhD) in Welding from Brunel University, London, UK in 1983 and 1986, respectively. He is a member of the scientific committee of Amirkabir University of Technology, Tehran Polytechnic, Iran and part-time lecturer in the Department of Material Science and the Department of Marine Engineering since 1987. He has been a member on the scientific board of many research institutions in Iran, i. e., Islamic Azad University, Department of Material Science, Science and Research Branch Center Tehran. He has published over 50 scientific articles and has been advising professor for more than 50 Master's degrees and industrial projects in the fields of physical metallurgy and welding technology. His research interests focus on HSLA steel and austenitic stainless steel weld metal phase transformation as well as the relationship between the microstructure and mechanical properties, i. e., toughness and fatigue strength.

Ghazal Moeini is currently a PhD student at Bauhaus University of Weimar, Germany. She received a Bachelor of Technology from the Marine Engineering Department, Chahbahar Maritime University, Chahbahar, Iran, and an MSc from the Department of Marine Engineering of Amirkabir University of Technology, Tehran, Iran, in 2009 and 2013, respectively. Her research interests include materials testing, the numerical simulation of welding processes, microstructure characterization and fatigue failure in welded joints.

Univ.-Prof. Dr.-Ing. habil. Carsten Könke studied civil engineering at TU Munich from 1983 to 1988 and worked as research assistant and senior researcher at Ruhr-Universität Bochum and RWTH Aachen from 19898 to 2000. In his Ph.D. thesis, he investigated coupled continuum damage models with discrete fracture models for simulation of fracture processes in ductile materials. Since 2001, he has been working as a full professor of Structural Analysis in the Institute of Structural mechanics at Bauhaus-Universität Weimar. In 2012, he additionally became Scientific Director of the Material Research and Testing Center of the Bauhaus-Universtät Weimar. His research focuses on multi-scale and multi-field simulation models for deterioration and damage effects in brittle and ductile materials, structural dynamics including earthquake engineering and system and parameter identification methods.

Dr. Ali Tahaei is a research assistant with PhD degree in Materials Engineering from the University of Ferrara, Italy. He has an MSc in Material Engineering in welding and isan international welding engineer (IWE). He worked in oil, gas and power plant industries. Also, he has got a close collaboration with materials investigation center in Mexico (Comimsa). His main research interests are microstructural characterization of welding joints and relevant mechanical properties for different alloy steels, especially stainless steels, as well as on hard facing by means of plasma transferred arc process with various types of nano particles.


References

1 K. J.Irvine: Strong tough structural steel, The Iron and Steel Institute, London, UK, (1967), 104, p. 1Suche in Google Scholar

2 F. B.Pickering: High – Strength, low alloy steels, Microalloying 75, Proceedings of an International Symposium on High Strength, Low-alloy Steels, Metals Park, Ohio, USA (1975), pp. 931Suche in Google Scholar

3 E. C.Hamre, A. M.Gilroy-Scott: Properties of acicular ferrite steel for large-diameter line pipe, Microalloying 75, Proceedings of an International Symposium on High Strength, Low-alloy Steels, Metals Park, Ohio, USA (1975), pp. 375386Suche in Google Scholar

4 T.Gladman, D.Dulieu, I. D.McIvor: Structure property relationships in high strength micro-alloyed steels, Microalloying 75, Proceedings of an International Symposium on High Strength, Low-alloy Steels, Metals Park, Ohio, USA (1975), pp. 3254Suche in Google Scholar

5 D.Loder, S. K.Michelic, C.Bernhard: Acicular Ferrite Formation and Its Influencing Factors-A Review, Journal of Materials Science Research6 (2017), pp. 244310.5539/jmsr.v6n1p24Suche in Google Scholar

6 P.Morcinek, V.Smid, T.Heczko, T.Priyanka: Alloying structural steels with acicular ferrite, Iron and Steel Research InstituteSuche in Google Scholar

7 H. D.Grozier: Microalloying 75, Proceedings of an International Symposium on High Strength, Low-alloy Steels, Metals Park, Ohio, USA (1975), pp. 241250Suche in Google Scholar

8 L.Meyer, H.de Boer: HSLA plate metallurgy, alloying, normalizing, controlled rolling, Journal of Metals29 (1977), pp. 172310.1007/BF03354299Suche in Google Scholar

9 T. ArakiKobe: Microstructural strengthening mechanism in high strength low alloy steels, Kobe Steel Ltd, Tokyo, Japan (1985), pp. 259271Suche in Google Scholar

10 G. M.Evans: Effect of heat-input on the microstructure and properties of C-Mn all-weld-metal deposits, Weld. Res. Abroad, W. R. C.1 (1983), No. 28, pp. 169 IIW-Doc-IIA-490-79Suche in Google Scholar

11 O.Grong, A. O.Klucken: Microstructure and properties of steel weld metals, Key Engineering Materials67–70 (1992), pp. 2146Suche in Google Scholar

12 K.Easterling: Solidification features of weld metal: Metallography and interpretation of weld microstructures, Proceedings, Denver, Colorado, USA, (1985), pp. 122Suche in Google Scholar

13 J. G.Garland, P. R.Kirkwood: The Notch Toughness of Submerged-Arc Weld Metal in Microalloyed Structural Steels, Inter-group Laboratories of the British Steel Corporation (1974), Sheffiled (UK), IIW-Doc-IX-892-74Suche in Google Scholar

14 I.Masumoto: Effect of micro-alloying elements on toughness of steel weld metal (1979), IIW/IIS-694-79Suche in Google Scholar

15 D. P.Fairchild: Local brittle zone microstructure in welds, J. Y.Koo (Ed.): Welding Metallurgy of Structural Steels: TMS-AIME, Warrendale, Pennsylvania, USA (1987), pp. 303318Suche in Google Scholar

16 S.Hansen: Justification for the use of HSLA steels in various applications, Microalloyed HSLA Steels Conference, ASM (1988), pp. 3142Suche in Google Scholar

17 V. F.Grabin, A. V.Denisenko: Metallurgy of welding of low and medium alloy steels, Naukova Dumka, Kiev, Ukraine (1978), p. 272Suche in Google Scholar

18 S.Takaki, K.Kawasaki, Y.Kimura: Mechanical properties of ultra-fine grained steels, Journal of Materials Processing Technology117 (2001), No. 3, pp. 35936310.1016/S0924-0136(01)00797-XSuche in Google Scholar

19 N.Mori, H.Homma, M.Wakabayashi, S.Ohkita: Characteristic of mechanical properties of Ti-B bearing weld metals, (1982), IIW-Doc-II-980-82,Suche in Google Scholar

20 D. J.Abson: Small particles in weld metals – A review, (1987), IIW-Doc-IXJ-122-87Suche in Google Scholar

21 D. J.Widgery: New Ideas on submerged ARC welding, Proceeding on Trends in Steels ND Consumables for Welding Conference, The Welding Institute (1978), p. 217Suche in Google Scholar

22 C.A.Dube, H.I.Aaronson, R.F.Mehl: The Formation of Proeutectoid Ferrite in Plain Carbon Steels, Rev. Met.55 (1958), Paris, France, p. 20110.1051/metal/195855030201Suche in Google Scholar

23 R. F.Mehl, C. A.Dube: The Eutectoid Reaction Phase Transformations in Solids, R.Smoluchowski, J. E.Mayer, W. A.Weyl (Ed.), Wiley, New York, USA (1951), p. 545Suche in Google Scholar

24 C. A.Dube, H. I.Aaronson, R. F.Mehl: The Formation of Proeutectoid Ferrite in Plain Carbon Steels, Rev. Met.55 (1958), Paris, France, p. 20110.1051/metal/195855030201Suche in Google Scholar

25 D. J.Abson, R. E.Dolby: A scheme for the quantitative description of ferritic weld metal microstructures, The Welding Institute WIRB4 (1980), pp. 100103Suche in Google Scholar

26 J.Garland: Weld pool solidification control, Metal Constructions6 (1974), pp. 121127Suche in Google Scholar

27 R. J.Pargeter: Quantification of weld metal microstructure, (1983), IIW-Doc-IX-1078-83Suche in Google Scholar

28 A. G.Olabi, M. J. S.Hashmi: The microstructure and mechanical properties of low carbon steel welded components after the application of PWHT, Journal of Materials Processing Technology56 (1996), No. 1-4, pp. 889710.1016/0924-0136(95)01824-7Suche in Google Scholar

29 L.-E.Svensson: Control of microstructures and properties in steel arc welds, Library of Congress Cataloging-in-Publication Data, (1994)Suche in Google Scholar

30 C. L.Choi, D. C.Hill: A study of microstructural progression in as deposited weld metal, Welding Journal57 (1978), pp. 232s236sSuche in Google Scholar

31 S.Kou: Welding Metallurgy, 2nd Edition, John Willy and Sons Inc., New York, USA (2002)10.1002/0471434027Suche in Google Scholar

32 A. G.Glover, J. T.McGrath, M. J.Tinkler, G. C.Weatherly: The influence of cooling rate and composition on weld meta microstructures in a C/Mn and a HSLA steel, Welding Journal56 (1977), pp. 267273 sSuche in Google Scholar

33 H.Frederikson, J.Stjerndahl: Solidification of iron-base alloys, Materials Science and Technology10 (1982), No. 12, pp. 57558510.1179/030634582790427136Suche in Google Scholar

34 R.Mehrabian: Rapid solidification, International Metal Review27 (1984), pp. 185208Suche in Google Scholar

35 K.Eastering: Introduction to Physical Metallurgy of Welding, Butterworths, London, UK (1983)Suche in Google Scholar

36 S. RaguNathan, V.Balasubramanian, S.Malarvizhi, A. G.Rao: Effect of welding processes on mechanical and microstructural characteristics of high strength low alloy naval grade steel joints, Defence Technology11 (2015), No. 3, pp. 30831710.1016/j.dt.2015.06.001Suche in Google Scholar

37 A. S.Oddy, J. M. J.McDill, L.Karlsson: Microstructural predictions including arbitrary thermal histories, re-austenization and carbon segregation effects, Canadian Metallurgical Quarterly35 (1996), No. 3, pp. 27528310.1016/0008-4433(96)00001-8Suche in Google Scholar

38 C.Zhang, X.Song, P.Lu, X.Hu: Effect of microstructure on mechanical properties in weld-repaired high strength low alloy steel, Materials & Design36 (2012), pp. 23324210.1016/j.matdes.2011.11.016Suche in Google Scholar

39 W. W.Bose-Filho, A. L. M.Carvalho, M.Strangwood: Effects of alloying elements on the microstructure and inclusion formation in HSLA multi pass welds, Materials Characterization58 (2007), No. 1, pp. 293910.1016/j.matchar.2006.03.004Suche in Google Scholar

40 S. S.Babu: The mechanism of acicular ferrite in weld deposits, Current Opinion in Solid State and Materials Science8 (2004), pp. 26727810.1016/j.cossms.2004.10.001Suche in Google Scholar

41 M. M.Hosseinioun, G.Moeini: Acicular ferrite nucleation as a diffusion controlled process in high strength low alloyed (HSLA) steel weld metal, Materials Testing58 (2016), No. 10, pp. 84885910.3139/120.110930Suche in Google Scholar

Published Online: 2017-07-10
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München

Artikel in diesem Heft

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Micro-CT defect analysis and hardness distribution of flat-face extruded EN AW6060 aluminum chips
  5. Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement
  6. Distribution functions for the linear region of the S-N curve
  7. Uncertainty of strain release coefficients for the blind-hole procedure evaluated by Monte Carlo simulation
  8. Influence of welding conditions on crack opening displacements in welded CT specimens
  9. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds
  10. Conventional sintering behavior of matrix materials used for diamond beads
  11. Acoustic emission by steel fiber reinforced concrete under tensile damage
  12. Investigations on multi-run metal made of HSLA steel – Heterogeneous microstructure and mechanical properties
  13. Design of utility tools and their application for testing mechanical properties of metallic materials
  14. Improvement of the sacrificial behavior of zinc in scratches of zinc-rich polymer coatings by incorporating clay nanosheets
  15. Influence of geometric design variables on the efficiency of the high energy horizontal chromite type ball milling process
  16. ANN evaluation of bearing strength on pin loaded composite plates in different environmental conditions
  17. Tribomechanical behavior of TiCN/TiAlN/WC-C multilayer film on cutting tool inserts for machining
  18. Preparation and mechanical properties of nano-quartz fiber filled PMMA composites
Heruntergeladen am 4.2.2026 von https://www.degruyterbrill.com/document/doi/10.3139/120.111047/html
Button zum nach oben scrollen