Home Technology Influence of geometric design variables on the efficiency of the high energy horizontal chromite type ball milling process
Article
Licensed
Unlicensed Requires Authentication

Influence of geometric design variables on the efficiency of the high energy horizontal chromite type ball milling process

  • Fatih Dökme , Onur Güven , Mustafa Kemal Kulekci , Ugur Esme and Seref Ocalir
Published/Copyright: July 10, 2017
Become an author with De Gruyter Brill

Abstract

Elemental chromium (Cr) does not occur in nature, but Cr exists in chromite ores as FeOCr2O3. There are some processes to obtain Cr from chromite. For all processes milling process is essential. In milling process of chromite, ball mills are generally used, because follow-up processes need fine particle size. Due to the fact that chromites with a high iron content are hard, mill components like liner and grinding media wear faster than many mines which is a significant problem in chromite grinding. This paper presents an experimental investigation of the influence of liner profile design and speed on chromite ball milling process. For evaluation of the experiments, power consumption, particle size and wear rate datas are calculated. In this experimental study, five liner profiles were designed and worked with three speeds (60, 70 and 80 % critical speed). By this combination, this study contains fifteen experiments. The ball milling process efficiency is related with shape of grinding media, kind of grinding media and product filling degree, ball size distrubition, etc., all other factors are kept constant. It was investigated the effects of liner profiles-milling speed variations on milling efficiency. 70 % critical speed was the optimum speed for all liner types. Best particle size result was meausured in the 10th experiment as 95 μm which has the highest liner. Also, the steepest liner profile has the second-best result at a critical speed of 70 %. Energy saving is important for selecting liner profile. Besides, shallowest design with 80 % critical speed has the worst particle size result. Although highest liner profile Type 5 has the best result for particle size, the difference of wear rates is nearly two times (160 g versus 90 g) compared to Type 3 which has a particle size result of 100 μm. This means nearly half life time difference between two liners. By considering three parameters, power consumption, particle size and wear rate, the best results occurred with the steepest and medium liner profile, and these may even be further improved.

Kurzfassung

Elementares Chrom (Cr) kommt in der Natur nicht vor, es existiert nur in Verbindungen, z. B. als chromithaltige Erze wie FeOCr2O3. Es gibt einige Prozesse, um Chrom aus Chromiten zu erhalten, wobei für alle Gewinnungsmethoden ein wichtiger Prozessschritt das Mahlen ist. Im Mahlprozess des Chromits werden üblicherweise Kugelmühlen verwendet, da die nachfolgenden Prozesse sehr feine Partikel erfordern. Da hocheisenhaltige Chromite hart sind, verschleißen die Mühlenkomponenten und die Mahlkörper schneller als viele andere, was eine besondere Schwierigkeit beim Chromitschleifen darstellt. Im vorliegenden Beitrag wird eine experimentelle Untersuchung der Effekte des Linerprofildesigns und der Geschwindigkeit auf den Chromit-Kugelmahlprozess vorgestellt. Zur Evaluation der Experimente wurden die Daten des Energieverbrauches, der Partikelgröße und der Verschleißrate berechnet. In der experimentellen Studie wurden fünf Linerprofile entworfen und mit drei Geschwindigkeiten (60, 70 und 80 % der kritischen Geschwindigkeit) bearbeitet. In dieser Kombinationsstudie waren fünfzehn Experimente enthalten. Die Effizienz des Kugelmahlprozeseses wurde auch in Bezug zur Medienform, den Medien und dem Produktbefüllungsgrad, der Kugelgrößenverteilung, usw. gesetzt, wobei in dieser Studie alle anderen Faktoren konstant gehalten wurden. Außerdem wurden die Effekte der Linerprofil-Mahlgeschwindigkeits-Variationen auf die Mahleffizienz untersucht. 70 % der kritischen Geschwindigkeit war die optimale Geschwindigkeit für alle Linertypen. Die beste Partikelgröße wurde im zehnten Experiment mit 95 μm gemessen, in dem das höchste Linerprofil verwendet wurde. Außerdem ergab sich mit dem steilsten Linerprofil das zweitbeste Ergebnis bei 70 % der kritischen Geschwindigkeit. Aufgrund der Energieersparnis ist dieser Fall bedeutend für die Wahl des Linerprofils. Die flachste Auslegung mit 80 % der kritischen Geschwindigkeit ergab das schlechteste Resultat. Obwohl sich das Linerprofil Typ 5 hinsichlich der Partikelgröße als am besten erwies, ergaben sich fast zweifach höhrere Verschleißwerte (160 g gegenüber 90 g), im Vergleich zu dem nächsten Ergebnis für Typ 3, in dem sich eine Partikelgröße von 100 μm einstellte. Dies bedeutet eine Differenz für die Linertypen von nahezu der Hälfte. Unter Berücksichtigung der drei Parameter, Energieverbrauch, Partikelgröße und Verschleißrate, wurden die besten Resultate für das steilste und das mittlere Linerprofil erhalten, die zudem verbessert werden könnten.


*Correspondence Address, Associate Prof. Dr. Ugur Esme, Technology Faculty, Mersin University, 33400 Tarsus-Mersin, Turkey, E-mail:

Fatih Dökme is working as a mechanical engineer at Sisecam Chemicals Group, Soda Sanayii A. S. in Mersin, Turkey. He received his BSc and MSc from the Department of Mechanical Engineering, University of Mersin, Turkey. His research interests include engineering design, welding technology and machinability of materials.

Dr. Onur Güven is a lecturer in the Department of Mechanical Engineering at Mersin University, Turkey. He received his MSc and PhD from the Department of Mechanical Engineering, University of Cukurova, Turkey. His work at the university involves giving courses and conducting research in the areas of welding, surface grinding, modeling, metal cutting and CAD/CAM process. He is the author of numerous international publications on these subjects.

Prof. Dr. Mustafa Kemal Kulekci is Professor in the Department of Mechanical Education, Faculty of Tarsus Technical Education, Mersin University, Turkey. He obtained his PhD degree from Gazi University, Ankara, Turkey in 2000. His research interests include CAD/CAM, friction stir welding, machinability of materials and water jet cutting applications.

Assoc. Prof. Dr. Ugur Esme is working in the Tarsus Technical Education Faculty, Mersin University, Turkey. He obtained his PhD degree from the, Department of Mechanical Engineering, Cukurova University, Turkey, in 2006. His research areas include CAD/CAM technology, welding, modeling, designing and water jet cutting applications.

Seref Ocalir, born in 1982, works as a research assistant at Mersin University Graduate School of Natural and Applied Sciences, Turkey. He obtained his BSc degree and MSc degree from Mersin University, in 2006 and 2009, respectively. His research interests include friction stir welding, machinability of materials, design and corrosion.


References

1 G.Chen, X.Wang, J.Wang, H.Du, Y.Zhang, S.Zheng, Y.Zhang: A new metallurgical process for the clean utilization of chromite ore, International Journal of Mineral Processing131 (2014), pp. 586810.1016/j.minpro.2014.07.002Search in Google Scholar

2 E. J. L.Kleyhans, B. W.Niezel, J. P.Beukes, P. G.Zyl: Utilisation of pre-oxidised ore in the pelletised chromite pre-reduction process, Minerals Engineering92 (2016), pp. 11412410.1016/j.mineng.2016.03.005Search in Google Scholar

3 J. L.Parks, D. M.Kjos: Liner design, materials and maintenance practices for large primary mills – Past, present and future, International Autogenous and Semiautogenous Grinding Technology3 (1996), pp. 270287Search in Google Scholar

4 B. A.Wills, T. J.Napier-Munn: Will's Mineral Processing Technology, 7th Ed., Elsevier, Cornwall, UK (2007)Search in Google Scholar

5 A. B.Makokha, M. H.Moys, M. M.Bwalya, K.Kimera: A new approach to optimising the life an performance of worn liners in ball mills: Experimental study and DEM simulation, International Journal of Mineral Processing84 (2007), pp. 22122710.1016/j.minpro.2006.09.009Search in Google Scholar

6 R.McIvor: Effects of speed and liner configuration on ball mill performance, Mining Engineering35 (1983), No. 6, pp. 617622Search in Google Scholar

7 M. S.Powell, G. N.Nurick: A study of charge motion in rotary mills: Part 1 – Extension of the theory, Minerals Processing9 (1996), No. 2, pp. 25926810.1016/0892-6875(96)00008-8Search in Google Scholar

8 L. A.Vermeulen: The lifting action of lifting bars in rotary mills, Journal of South African Institute of Mining and Metalugy85 (1985), No. 2, pp. 5163Search in Google Scholar

9 P. W.Cleary, P.Owen: Effect of liner design on performance of a HICOM® mill over the predicted liner life cycle, International Journal of Mineral Processing134 (2015), pp. 112210.1016/j.minpro.2014.11.003Search in Google Scholar

10 B.Clermont, B.de Haas, O.Hancotte: Real time mill management tools stabilizing your milling process, Proc. of the 3rd International Platinum Conference, The Southern African Institute of Mining and Metallurgy, South Africa (2008), pp. 1320Search in Google Scholar

11 N. N. S.Lameck: Effects of Grinding Media Shapes on Ball Milling Performance, MSc Thesis, University of the Witwatersrand, Johannesburg, South Africa (2005)Search in Google Scholar

12 N.Kotake, K.Daibo, T.Yamamoto, Y.Kanda: Experimental investigation on a grinding rate constant of solid materials by a ball mill – Effect of ball diameter and feed size, Powder Technology143–144 (2004), pp. 19620310.1016/j.powtec.2004.04.014Search in Google Scholar

13 P. W.Cleary: Charge behaviour and power consumption in ball mills: Sensitivity to mill operating conditions, liner geometry and charge composition, International Journal of Mineral Processing63 (2001), pp. 7911410.1016/S0301-7516(01)00037-0Search in Google Scholar

14 M. S.Powell, I.Smit, P.Radziszewski, P.Cleary, B.Rattray, K. G.Eriksson, L.Schaeffer: Advances in comminution – The selection and design of mill liners, Journal of the Society for Mining, Metallurgy and Exploration23 (2006), pp. 331376Search in Google Scholar

15 A. F.Taggart: Handbook of Mineral Dressing Ores and Industrial Materials, Wiley, New York, USA (1947)Search in Google Scholar

16 D.Royston: Semi-autogenous grinding (SAG) mill liner design and development, Minerals and Metallurgical Processing24 (2007), No. 3, pp. 121132Search in Google Scholar

17 M.Rezaeizadeh, M.Fooladi, M. S.Powell, S. H.Mansouri: Experimental observations of lifter parameters and mill operation on power draw and liner impact loading, International Journal of Mineral Processing23 (2010), pp. 1182119110.1016/j.mineng.2010.07.017Search in Google Scholar

18 J.Lux, B.Clermont: The influence of mill speed and pulp density on the grinding efficiency for secondary stage grinding, Proc. of the 1st International Platinum Conference, The Southern African Institute of Mining and Metallurgy, Johannesburg, South Africa (2004), pp. 1320Search in Google Scholar

Published Online: 2017-07-10
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Micro-CT defect analysis and hardness distribution of flat-face extruded EN AW6060 aluminum chips
  5. Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement
  6. Distribution functions for the linear region of the S-N curve
  7. Uncertainty of strain release coefficients for the blind-hole procedure evaluated by Monte Carlo simulation
  8. Influence of welding conditions on crack opening displacements in welded CT specimens
  9. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds
  10. Conventional sintering behavior of matrix materials used for diamond beads
  11. Acoustic emission by steel fiber reinforced concrete under tensile damage
  12. Investigations on multi-run metal made of HSLA steel – Heterogeneous microstructure and mechanical properties
  13. Design of utility tools and their application for testing mechanical properties of metallic materials
  14. Improvement of the sacrificial behavior of zinc in scratches of zinc-rich polymer coatings by incorporating clay nanosheets
  15. Influence of geometric design variables on the efficiency of the high energy horizontal chromite type ball milling process
  16. ANN evaluation of bearing strength on pin loaded composite plates in different environmental conditions
  17. Tribomechanical behavior of TiCN/TiAlN/WC-C multilayer film on cutting tool inserts for machining
  18. Preparation and mechanical properties of nano-quartz fiber filled PMMA composites
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.111058/html
Scroll to top button