Home Technology Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement
Article
Licensed
Unlicensed Requires Authentication

Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement

  • Stefan Gach , Simon Olschok , John Anthony Francis and Uwe Reisgen
Published/Copyright: July 10, 2017
Become an author with De Gruyter Brill

Abstract

In welding, the change of the aggregate state solid-liquid-solid is, via a localized heat action at the welding point used for the material binding joining of parts. Due to the thermal expansion and also due to structural changes, heat residual stresses and transformation residual stresses develop which often exert a negative influence on the precision of the part. When the shrinkage-induced residual stresses exceed the temperature-dependent yield stress, weldment distortion is the consequence. For reduction of the distortion and the residual tensile stresses in welded seams on carbon manganese steels, low transformation temperature materials (LTT) were developed. These materials use the volume expansion effect during martensitic transformation. The volume expansion counteracts volume shrinkage during cooling. The metallographic analysis of an electron beam welded seam in unalloyed steel with LTT filler material has been demonstrated in Part 1. This second part shows the effect on near-surface residual stresses examined by hole drilling method in combination with an optical evaluation by electronic speckle pattern interferometry.

Kurzfassung

In Schmelzschweißprozessen wird durch lokale Wärmeeinwirkung die Aggregatszustandsänderung fest-flüssig-fest zum Verbinden der Fügepartner eingesetzt. Aufgrund thermischer Ausdehnung und strukturellen Veränderungen entstehen Wärme- sowie Umwandlungsspannungen, die im Allgemeinen einen negativen Einfluss auf die Präzision des Bauteils haben. Überschreiten die schrumpfungsbedingten Eigenspannungen die temperaturabhängige Streckgrenze, ist Verzug die Folge. Zur Verminderung des Bauteilverzuges und der Eigenspannungsbelastung in Schweißnähten an Kohlenstoff-Manganstählen wurden Low-Transformation-Temperature-Werkstoffe (LTT) entwickelt. Diese Materialien verwenden den Volumenausdehnungseffekt während der martensitischen Phasenumwandlung zur Einleitung von Druckspannungen. Die Volumenausdehnung wirkt der Volumenschrumpfung während der Abkühlung aus der Schmelzwärme entgegen. Die metallographische Analyse einer Elektronenstrahlschweißnaht in unlegiertem Stahl mit LTT-Zusatzwerkstoff wurde in Teil 1 dieser Publikation gezeigt. Die in diesem zweiten Teil vorgestellten Arbeiten untersuchen den Effekt auf oberflächennahe Eigenspannungen. Diese werden mittels Bohrlochmethode in Kombination mit einer optischen Auswertung durch Elektronische Spackle-Interferometrie (ESPI) durchgeführt.


*Correspondence Address, Stefan Gach, M.Eng. IWE, RWTH Aachen, Pontstraße 49, D 52062 Aachen, Germany, E-mail:

Stefan Gach, M.Eng., born 1983, studied Mechanical Engineering and Product Development in Mechanical Engineering at FH Aachen University of Applied Science, Germany. Currently, he is actually working as a research engineer at the Beam Welding Department of ISF Welding and Joining Institute of RWTH Aachen University, Germany.

Dr.-Ing. Simon Olschok, born 1972, studied Mechanical Engineering at RWTH Aachen University, Germany. From 2002 to 2007, he worked as research engineer at the ISF Welding and Joining Institute of the RWTH Aachen University and received a doctorate with the thesis „Hybrid Welding of Thick Plates” in 2008. Since 2007, he is Head of Beam Welding Department at the ISF Welding and Joining Institute of the RWTH Aachen University.

Dr. John Anthony Francis, born 1973, studied Mechanical Engineering at The University of Adelaide, Australia and received a doctorate from the same university in 2000. He worked at CSIRO in Australia for 7 years from 1998, as a postdoctoral fellow and a research scientist in welding process technology. Then he moved to the UK and has been involved in various research programs focusing on residual stress development in power plant welds for the past 12 years. He is currently Reader in Welding Technology at The University of Manchester, UK.

Univ.-Prof. Dr.-Ing. Uwe Reisgen, born 1962, studied Mechanical Engineering at RWTH Aachen University, Germany and received a doctorate at the ISF Welding and Joining Institute of the RWTH Aachen University in 1995. His thesis was on the research of wire feeding systems and their components for GMA welding. Since 2007, he is Head of the ISF Welding and Joining Institute at RWTH Aachen University.


References

1 T.Nitschke-Pagel, K.Dilger: Eigenspannungen in Schweißverbindungen – Teil 1: Ursachen der Eigenspannungsentstehung beim Schweißen, Schweißen und Schneiden58 (2006) No. 9, pp. 466479Search in Google Scholar

2 Y.Mikami, M.Mochizuki, M.Toyoda, Y.Morikage: Measurement and numerical simulation of angular distortion of fillet welded T-joints – Welding angular distortion control by transformation expansion of weld metals (Report 1), Welding International21 (2007), No. 8, pp. 54756010.1080/09507110701637833Search in Google Scholar

3 Y.Mikami, Y.Morikage, M.Mochizuki, M.Toyoda: Angular distortion of fillet welded T joint using low transformation temperature welding wire, Science and Technology of Welding and Joining14 (2009), No. 2, pp. 9710510.1179/136217108X382972Search in Google Scholar

4 J. A.Francis, H. J.Stone, S.Kundu, H. K. D. H.Bhadeshia, R. B.Rogge, P. J.Withers, L.Karlsson: The Effects of Filler Metal Transformation Temperature on Residual Stresses in a High Strength Steel Weld, Journal of Pressure Vessel Technology131 (2009), pp. 11510.1115/1.3122036Search in Google Scholar

5 A.Kromm, T.Kannengiesser, J.Gibmeier: In situ observation of phase transformations during welding of low transformation temperature filler material, Materials Science Forum638–642 (2010), pp. 3769377410.4028/www.scientific.net/MSF.638-642.3769Search in Google Scholar

6 S.Gach, A.Schwedt, S.Olschok, U.Reisgen, J.Mayer: Materials Testing59 (2017), No. 2, pp. 14815410.3139/120.110957Search in Google Scholar

7 K.-H.Kloos: Definition und Entstehungsursachen, in: Eigenspannungen, Deutsche Gesellschaft fur Metallkunde, Oberursel, Germany (1980), pp. 120Search in Google Scholar

8 G.Schulze: Die Metallurgie des Schweissens, Springer-VerlagBerlin Heidelberg, Germany (2010) ISBN: 978-3-642-03183-0Search in Google Scholar

9 H.Wohlfahrt: Härterei Technische Mitteilungen5 (1986), pp. 24825710.1515/htm-1986-410507Search in Google Scholar

10 A.Kromm: Umwandlungsverhalten und Eigenspannung beim Schweissen neuartiger LTT-Zusatzwerkstoffe, PhD Thesis, Bundesanstalt für Materialforschung und -prüfung (BAM). Berlin, Germany (2011), ISBN: 978-3-9813853-9-7Search in Google Scholar

11 A.Kromm, T.Kannengiesser, J.Altenkirch, J.Gibmeier: Residual stresses in multilayer welds with different martensitic transformation temperatures analyzed by high-energy synchrotron diffraction, Materials Science Forum681 (2011), pp. 374210.4028/www.scientific.net/MSF.681.37Search in Google Scholar

12 N. J.Rendler, I.Vigness: Hole-drilling strain-gage method of measuring residual stresses, Experimental Mechanics6 (1966), No. 12, pp. 57758610.1007/BF02326825Search in Google Scholar

13 http://www.stresstechgroup.com/files/upload_pdf/604976/hd1000g_Prism_standard.pdfSearch in Google Scholar

14 http://www.esab-okhandbuch.de/content/print/1251127600Search in Google Scholar

Published Online: 2017-07-10
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Micro-CT defect analysis and hardness distribution of flat-face extruded EN AW6060 aluminum chips
  5. Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement
  6. Distribution functions for the linear region of the S-N curve
  7. Uncertainty of strain release coefficients for the blind-hole procedure evaluated by Monte Carlo simulation
  8. Influence of welding conditions on crack opening displacements in welded CT specimens
  9. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds
  10. Conventional sintering behavior of matrix materials used for diamond beads
  11. Acoustic emission by steel fiber reinforced concrete under tensile damage
  12. Investigations on multi-run metal made of HSLA steel – Heterogeneous microstructure and mechanical properties
  13. Design of utility tools and their application for testing mechanical properties of metallic materials
  14. Improvement of the sacrificial behavior of zinc in scratches of zinc-rich polymer coatings by incorporating clay nanosheets
  15. Influence of geometric design variables on the efficiency of the high energy horizontal chromite type ball milling process
  16. ANN evaluation of bearing strength on pin loaded composite plates in different environmental conditions
  17. Tribomechanical behavior of TiCN/TiAlN/WC-C multilayer film on cutting tool inserts for machining
  18. Preparation and mechanical properties of nano-quartz fiber filled PMMA composites
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.111046/html
Scroll to top button