Home Technology Micro-CT defect analysis and hardness distribution of flat-face extruded EN AW6060 aluminum chips
Article
Licensed
Unlicensed Requires Authentication

Micro-CT defect analysis and hardness distribution of flat-face extruded EN AW6060 aluminum chips

  • Philipp Goerlich , Ronja Scholz and Frank Walther
Published/Copyright: July 10, 2017
Become an author with De Gruyter Brill

Abstract

Besides the energy-intensive secondary metallurgical recycling route, aluminum chips can alternatively be extruded to final profiles by extrusion. The mechanical properties of the extruded profiles have a dependency on the quality of the weldments of the chips, which differs locally due to the batch process. To characterize the influence of this dependency on the mechanical properties, round pre-compacted chip blocks consisting of EN AW-6060 were pre-heated for six hours at 550 °C, extruded with flat-face dies at a recipient temperature of 450 °C and divided into three zones: profile, transition and contact zone. A micro-computed tomographic defect analysis was performed on the samples. It has been shown that the profile samples of both geometries have a very low defect quantity and volume, while towards the contact zone the number and volume increases significantly and small delaminations occur on the surface. For the determination of the hardness distribution, a macro hardness mapping was performed. The coarse grain edge in the outer region of the specimens, which has resulted from increased temperature as a result of the recipient friction and shear stress, shows a slightly increased hardness. Round profiles show a concentric hardness decrease and square profiles a linear drop towards the center of the cross section of the specimens.

Kurzfassung

Neben der energieintensiven sekundärmetallurgischen Recyclingroute, können Aluminiumspäne alternativ mit einer Strangpressanlage zu finalen Profilen gepresst werden. Die mechanischen Eigenschaften der gepressten Profile weisen eine Abhängigkeit von der Qualität der Verschweißung der Späne auf, die sich im Batch-Prozess lokal unterscheidet. Zur Charakterisierung des Einflusses dieser Abhängigkeit auf die mechanischen Eigenschaften wurden runde vorkompaktierte Spanblöcke aus EN AW-6060 sechs Stunden bei 550 °C vorgeheizt, bei einer Rezipiententemperatur von 450 °C mit zwei unterschiedlichen Flachmatrizen gepresst und in je drei Zonen unterteilt: Profil, Übergang und Kontakt. An den Proben wurde eine mikro-computertomographische Defektanalyse durchgeführt. Die Profilproben beider Geometrien weisen eine sehr geringe Defektanzahl und -volumina auf, während zur Kontaktzone hin die Anzahl stark ansteigt und ebenfalls kleine Delaminationen auf der Oberfläche auftreten. Zur Ermittlung der Härteverteilung wurde ein Makro-Härtemapping durchgeführt. Der im äußeren Bereich der Proben entstandene Grobkornrand, der infolge einer erhöhten Temperatur durch Rezipientenreibung und Scherspannung entstanden ist, weist eine leicht erhöhte Härte auf. Runde Profile weisen dagegen eine konzentrische und quadratische Profile eine lineare Härteabnahme in Richtung Mittelpunkt des Probenquerschnitts auf.


*Correspondence Address, MSc Ronja Scholz, TU Dortmund University, Department of Materials Test Engineering (WPT), Baroper Str. 303, D-44227 Dortmund, Germany, E-mail:

Philipp Goerlich, MSc RWTH Aachen University, born in 1989, studied Industrial Engineering with specialization in Materials and Process Engineering at RWTH Aachen University, Germany. After his master thesis, he has been working in the Department of Materials Test Engineering (WPT) at TU Dortmund University, Germany, since 2016. His research focus is on the determination and expansion of the application limits in the metal forming recycling of aluminum chips.

MSc Ronja Scholz, born in 1987, studied Sales Engineering and Product Management with specialization in Materials Engineering at Ruhr University Bochum, Germany. After her master thesis, she has been working as a scientific assistant in the Department of Materials Test Engineering (WPT) at TU Dortmund University, Germany, since 2014. Her research focus is on fatigue and fracture of resource-efficient composite materials.

Prof. Dr.-Ing. Frank Walther, born in 1970, studied Mechanical Engineering majoring in Materials Science and Engineering at TU Kaiserslautern University, Germany, from 1992 to 1997. There, he finished his PhD on the fatigue assessment of railway wheel steels in 2002, and his habilitation on physical measurement techniques for microstructural-based fatigue assessment and lifetime calculation of metals in 2007. At Schaeffler AG in Herzogenaurach, Germany, he took responsibility for Public Private Partnership within Corporate Development from 2008 to 2010. Since 2010, he has been Professor for Materials Test Engineering (WPT) at TU Dortmund University, Germany. His research portfolio includes determination of structure-property-relationships of metal- and polymer-based materials and components under fatigue loading from LCF to VHCF range, taking the influence of manufacturing and joining processes as well as service loading and corrosion deterioration into account.


References

1 H.-G.Schwarz: Aluminum production and energy, Encyclopedia of Energy1 (2004), pp. 819510.1016/B0-12-176480-X/00372-7Search in Google Scholar

2 K.Krone: Aluminiumrecycling – Vom Vorstoff bis zur fertigen Legierung, Aluminium-VerlagDüsseldorf (2000)Search in Google Scholar

3 M.Stern: Method for Treating Aluminum or Aluminum Alloy Scrap, U. S. Patent 2,391,752 (1945)Search in Google Scholar

4 V.Güley, A.Güzel, A.Jäger, N. BenKhalifa, A. E.Tekkaya, W. Z.Misiolek: Effect of die design on the welding quality during solid state recycling of AA6060 chips by hot extrusion, Materials Science and Engineering A574 (2013), pp. 16317510.1016/j.msea.2013.03.010Search in Google Scholar

5 M.Haase, N. BenKahlifa, A. E.Tekkaya, W. Z.Misiolek: Improving mechanical properties of chip-based aluminum extrudates by integrated extrusion and equal channel angular pressing (iECAP), Materials Science and Engineering A539 (2012), pp. 19420410.1016/j.msea.2012.01.081Search in Google Scholar

6 M.Haase: Mechanical Properties Improvement in Chip Extrusion with Integrated Equal Channel Angular Pressing, Dr.-Ing. Dissertation, TU Dortmund University, Germany, Shaker Verlag Aachen (2013)Search in Google Scholar

7 L.Donati, L.Tomesani: The prediction of seam welds quality in aluminum extrusion, Journal of Materials Processing Technology153–154 (2004), pp. 36637310.1016/j.jmatprotec.2004.04.215Search in Google Scholar

8 S.Siddique, M.Imran, M.Rauer, M.Kaloudis, E.Wycisk, C.Emmelmann, F.Walther: Computed tomography for characterization of fatigue performance of selective laser melted parts, Materials and Design83 (2015), pp. 66166910.1016/j.matdes.2015.06.063Search in Google Scholar

Published Online: 2017-07-10
Published in Print: 2017-07-14

© 2017, Carl Hanser Verlag, München

Articles in the same Issue

  1. Inhalt/Contents
  2. Contents
  3. Fachbeiträge/Technical Contributions
  4. Micro-CT defect analysis and hardness distribution of flat-face extruded EN AW6060 aluminum chips
  5. Confirmation of tensile residual stress reduction in electron beam welding using low transformation temperature materials (LTT) as localized metallurgical injections – Part 2: Residual stress measurement
  6. Distribution functions for the linear region of the S-N curve
  7. Uncertainty of strain release coefficients for the blind-hole procedure evaluated by Monte Carlo simulation
  8. Influence of welding conditions on crack opening displacements in welded CT specimens
  9. Microstructure characterization and corrosion testing of MAG pulsed duplex stainless steel welds
  10. Conventional sintering behavior of matrix materials used for diamond beads
  11. Acoustic emission by steel fiber reinforced concrete under tensile damage
  12. Investigations on multi-run metal made of HSLA steel – Heterogeneous microstructure and mechanical properties
  13. Design of utility tools and their application for testing mechanical properties of metallic materials
  14. Improvement of the sacrificial behavior of zinc in scratches of zinc-rich polymer coatings by incorporating clay nanosheets
  15. Influence of geometric design variables on the efficiency of the high energy horizontal chromite type ball milling process
  16. ANN evaluation of bearing strength on pin loaded composite plates in different environmental conditions
  17. Tribomechanical behavior of TiCN/TiAlN/WC-C multilayer film on cutting tool inserts for machining
  18. Preparation and mechanical properties of nano-quartz fiber filled PMMA composites
Downloaded on 4.2.2026 from https://www.degruyterbrill.com/document/doi/10.3139/120.111050/html
Scroll to top button