Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
-
Anita Bocho-Janiszewska
und Tomasz Wasilewski
Abstract
The aim of the study presented in the paper was to demonstrate that using a combination of glycerin and surfactants in the form of sodium salts in the production of laundry liquid detergents might be an alternative to the currently commonly produced products based on surfactants in the form of potassium or triethanol ammonium salts. Tests were performed to determine functional standard properties of model liquid laundry detergent formulations with different contents of glycerin. The analysis focused on foaming power, rheological properties, solubility, washing ability and decrease in fabric strength after washing. The most beneficial functional properties, comparable to those found in formulations containing potassium or triethanol ammonium salts, were achieved at the glycerin content of 20%.
Kurzfassung
Ziel der in der Arbeit dargestellten Studie war es zu zeigen, dass die Verwendung einer Kombination aus Glycerin und Natriumsalz-Tensiden bei der Herstellung von Flüssigwaschmitteln eine Alternative zu den derzeit üblicherweise hergestellten Produkten auf der Basis von Tensiden in Form der Kalium- oder Triethanolammoniumsalze ist. Es wurden Versuche durchgeführt, um die funktionellen Standardeigenschaften von flüssigen Waschmittelmodellformulierungen mit unterschiedlichen Glyceringehalten zu bestimmen. Die Analyse konzentrierte sich auf das Schaumvermögen, die rheologischen Eigenschaften, die Löslichkeit, Waschkraft und Abnahme der Gewebefestigkeit nach dem Waschen. Die vorteilhaftesten funktionellen Eigenschaften, die mit denen von kalium- oder triethanolammoniumsalz-haltigen Formulierungen vergleichbar sind, wurden bei einem Glyceringehalt von 20% gefunden.
References
1. Smulders, E.: Laundry detergents, Wiley-VCH Verlag GmbH, Weinheim (2002). 10.1002/3527600450Suche in Google Scholar
2. Lai, K. Y.: Liquid detergents. Surfactant science series, Marcel Dekker, New York (1997). 10.1201/9781420027907Suche in Google Scholar
3. HauthalH.G. and WagnerG.: Household Cleaning, Care and Maintenance Products, H. Ziolkowsky GmbH, Germany (2004).Suche in Google Scholar
4. Bocho-Janiszewska, A.: Nonionic surfactants in liquid laundry detergents for automatic laundry washing machine, Polish Journal of Commodity Science43 (2015) 111–118; REF-full text.Suche in Google Scholar
5. Wasilewski, T. and Bujak, T.: Effect of the Type of Nonionic Surfactant on the Manufacture and Properties of Hand Dishwashing Liquids in the Coacervate Form, Industrial & Engineering Chemistry Research53 (2014) 13356–13361. 10.1021/ie502163dSuche in Google Scholar
6. Yu, Y., Zhao, J. and Bayly, A. E.: Development of Surfactants and Builders in Detergent Formulations. Chinese Journal of Chemical Engineering16 (2008) 517–527. 10.1016/S1004-9541(08)60115-9Suche in Google Scholar
7. Scheibel, J. J.: The Evolution of Anionic Surfactant Technology to Meet the Requirements of the Laundry Detergent Industry, Journal of Surfactants and Detergents7 (2004) 319–328. 10.1007/s11743-004-0317-7Suche in Google Scholar
8. Rosen, M. J. and Kunjappu, J. T.: Surfactants and Interfacial Phenomena, John Wiley & Sons (2012). 10.1002/9781118228920Suche in Google Scholar
9. Seweryn, A., Wasilewski, T. and Bujak, T.: Effect of salt on the manufacturing and properties of hand dishwashing liquids in the coacervate form, Industrial & Engineering Chemistry Research55 (2016) 1134–1141. 10.1021/acs.iecr.5b04048Suche in Google Scholar
10. Seguin, C., Eastoe, J., Heenan, R. K. and Grillo, I.: SANS studies of the effects of surfactant head group on aggregation properties in water/glycol and pure glycol systems, J. Colloid Interface Sci.315 (2007) 714–720. 10.1016/j.jcis.2007.07.014Suche in Google Scholar
11. Zana, R.: Aqueous surfactant-alcohol systems: A review, Advances in Colloid and Interface Science57 (1995) 1–64. 10.1016/0001-8686(95)00235-ISuche in Google Scholar
12. Cantu, L., Corti, M., Degiorgio, V., Hoffman, H. and Ulbricht, W. J.: Nonionic micelles in mixed water-glycerol solvent, Colloid Interface Sci.116 (1987) 384–389. 10.1016/0021-9797(87)90134-2Suche in Google Scholar
13. D'Errico, G., Ciccarelli, D. and Ortona, O.: Effect of glycerol on micelle formation by ionic and nonionic surfactants at 25°C, Journal of Colloid and Interface Science286 (2005) 747–754. 10.1016/j.jcis.2005.01.030Suche in Google Scholar PubMed
14. Ito, T., Nakashimada, Y., Senba, K., Matsui, T. and Nishio, N.: Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process, Journal of Bioscience and Bioengineering100 (2005) 260–265. 10.1263/jbb.100.260Suche in Google Scholar PubMed
15. Vicente, G., Martıínez, M. and Aracil, J.: Integrated biodiesel production: a comparison of different homogeneous catalysts systems, Bioresource Technology92 (2004) 297–305. 10.1016/j.biortech.2003.08.014Suche in Google Scholar PubMed
16. Standard PN-ISO 696:1994. Surface active agents.Determination of foaming properties by the modified Ross-Miles method.Suche in Google Scholar
17. Standard PN-93/C04810/01. Washing and laundry detergents.Determination of washing ability of laundry detergents for cotton.Suche in Google Scholar
18. Standard ISO 13934-1:2013(E) Textiles Tensile properties of fabrics Part 1: Determination of maximum force and elongation at maximum force using the strip method.Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles