Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
-
Lusine R. Harutyunyan
Abstract
The influence of vitamins B1 (thiamine hydrochloride), B6 (pyridoxine) and B12 (cyanocobalamine) on the micellization, surface activity and viscometric behavior of anionic surfactant sodium dodecylsulfate, cationic surfactant cetylpyridinium bromide and nonionic surfactant hexadecylpoly[oxyethylene(20)] alcohol at different temperatures was studied. The critical micelle concentration, the micellization thermodynamics, the maximum adsorption density, the standard free energy of adsorption and the other micellar parameters of surfactants in the presence of vitamins B1, B6 and B12 were obtained. On the basis of dependence of the relative viscosities on concentration, the viscosity B-coefficients of the Jones-Dole semiempirical equation were calculated for both premicellar and postmicellar regions. The results of our study allowed the conclusion that vitamins B1, B6 and B12 are solubilized in micelles.
Kurzfassung
Der Einfluss der Vitamine B1 (Thiaminhydrochlorid), B6 (Pyridoxin) und B12 (Cyanocobalamin) auf die Mizellenbildung, die Oberflächenaktivität und das viskose Verhalten des anionischen Tensids Natriumdodecylsulfat, des kationischen Tensids Cetylpyridiniumbromid und des nichtionischen Tensids Hexadecylpoly(oxyethylen (20))alkohol wurde bei verschiedenen Temperaturen untersucht. Die kritische Mizellenbildungskonzentration, die Thermodynamik der Mizellenbildung, die maximale Adsorptionsdichte, die freie Gibbs-Adsorptionsenergie und die anderen mizellaren Parameter von Tensiden wurden in Gegenwart der Vitamine B1, B6 und B12 erhalten. Auf der Grundlage der Abhängigkeit der relativen Viskositäten von der Konzentration wurden die Viskositätskoeffizienten der semiempirischen Jones-Dole- Gleichung sowohl für den prämmizellaren als auch für den postmizellaren Bereich berechnet. Die Ergebnisse unserer Studie erlaubten den Schluss, dass die Vitamine B1, B6 und B12 in Micellen solubilisiert sind.
References
1. Kundu, A. and Kishore, N.: Apparent molar heat capacities and apparent molar volumes of aqueous nicotinamide at different temperatures. J. Solut. Chem.32 (2003) 703–717. 10.1023/B:JOSL.0000002990.73945.c9Suche in Google Scholar
2. Banipal, T. S., Singh, H., Banipal, P. K. and Singh, V.: Volumetric and viscometric studies on L-ascorbic acid, nicotinic acid, thiamine hydrochloride and pyridoxine hydrochloride in water at temperatures (288.15–318.15) K and at atmospheric pressure.Thermochim. Acta553 (2013) 31–39. 10.1016/j.tca.2012.10.017Suche in Google Scholar
3. Kharkevich, D. A.: Pharmacology, Geotar-Media, Moscow (2005).Suche in Google Scholar
4. Shilov, P. A. and YakovlevP.I.: Basics of Clinical Vitaminology, Medicina, Leningrad (1974).Suche in Google Scholar
5. Knyazev, A. V., Smirnova, N. N., Plesovskikh, A. S., Shushanov, A. N. and Knyazeva, S. S.: Low-temperature heat capacity and thermodynamic functions of vitamin B12.Thermochim. Acta582 (2014) 35–39. 10.1016/j.tca.2014.02.025Suche in Google Scholar
6. Knyazev, A. V., Letyanina, I. A., Plesovskikh, A. S., Smirnova, N. N. and Knyazeva, S. S.: Thermodynamic properties of vitamin B2.Thermochim. Acta575 (2014) 12–16. 10.1016/j.tca.2013.09.032Suche in Google Scholar
7. Harutyunyan, L. R., Lachinyan, M. L. and Harutyunyan, R. S.: Effect of ascorbic acid on the colloidal and micellar properties of anionic, cationic and nonionic surfactants: conductivity, volumetric, viscometric and fluorescence study. J. Chem. Eng. Data58 (2013) 2998–3008. 10.1021/je400667cSuche in Google Scholar
8. Harutyunyan, L. R., Lachinyan, M. L. and Harutyunyan, R. S.: Effect of nicotinic acid on micellization and viscosity of surfactants in aqueous solutions. Colloid J.77 (2015) 404–408. 10.1134/S1061933X15040031Suche in Google Scholar
9. Harutyunyan, L. R.: The effect of vitamin E on micellization of sodium pentadecylsulfonate in ethanol solutions. Colloid J.76 (2014) 372–375. 10.1134/S1061933X14030028Suche in Google Scholar
10. Harutyunyan, L. R., Lachinyan, M. L., Vardanyan, R. L. and Harutyunyan, R. S.: Effect of surfactants on ascorbic acid and nicotinic acid atmospheric oxidation kinetics. Proceedings of YSU (Chemistry and Biology)1 (2016) 3–9.Suche in Google Scholar
11. Zdziennicka, A., Szymczyk, K., Krawczyk, J. and Jańczuk, B.: Critical micelle concentration of some surfactants and thermodynamic parameters of their micellization.Fluid Phase Equil.322–323 (2012) 126–134. 10.1016/j.fluid.2012.03.018Suche in Google Scholar
12. Umlong, I. M. and Ismail, K.: Micellization behaviour of sodium dodecyl sulfate in different electrolyte media. Colloids Surf. A: Physicochem. Eng. Asp.299 (2007) 8–14. 10.1016/j.colsurfa.2006.11.010Suche in Google Scholar
13. Bakshi, M. S. and Kaur, G.: Mixed micelles of hexadecylpyridinium bromide + tetradecyltrimethylammonium bromide in aqueous glycol oligomers. J. Surf. Deterg.3 (2000) 159–166. 10.1007/s11743-000-0120-5Suche in Google Scholar
14. Rakshit, A. K. and Sharma, B.: The effect of amino acids on the surface and thermodynamic properties of poly[oxyethlene(10)] lauryl ether in aqueous solution.Colloid Polym. Sci.281 (2003) 45–51. 10.1007/s00396-002-0743-7Suche in Google Scholar
15. Mehta, S. K., Chaudhary, S., Bhasin, K. K., Kumar, R. and Aratono, M.: Conductometric and spectroscopic studies of sodium dodecyl sulfate in aqueous media in the presence of organic chalcogen. Colloid Surf. A: Physicochem. Eng. Asp.304 (2007) 88–95. 10.1016/j.colsurfa.2007.04.031Suche in Google Scholar
16. Dubey, N.: A Conductometric study of interaction between sodium dodecyl sulfate and 1-propanol, 1-butanol and 1-hexanol at different temperatures.J. Surf. Sci. Technol.24 (2008) 139–148.Suche in Google Scholar
17. Graciani, M., Munoz, M., Rodriguez, A. and Moya, M. L.: Water–N,N-dimethylformamide alkyltrimethylammonium bromide micellar solutions: thermodynamic, structural, and kinetic studies. Langmuir21 (2005) 3303–3310. PMid:15807568; 10.1021/la046833aSuche in Google Scholar
18. Chauhan, M. S., Kumar, G., Kumar, A., Sharma, K. and Chauhan, S.: Conductance and viscosity studies of sodium dodecylsulfate in aqueous solutions of dimethylsulfoxide and methanol. Colloids and Surfaces A: Physicochem.Eng. Aspects180 (2001) 111–119. 10.1016/S0927-7757(00)00761-5Suche in Google Scholar
19. Harutyunyan, L. R. and Markarian, S. A.: Effect of dimethylsulfoxide and diethylsulfoxide on micellization and viscometric properties of cetylpyridinium bromide aqueous solutions. J. Molec. Liq.160 (2011) 136–139. 10.1016/j.molliq.2011.03.010Suche in Google Scholar
20. Roy, M. N., Das, R. K. and Bhattacharjee, A.: Apparent molar volume, viscosity B-coefficient and adiabatic compressibility of tetrabutylammonium bromide in aqueous ascorbic acid solutions at T = 298.15, 308.15 and 318.15 K.Russ. J. Physical Chem. A84 (2010) 2201–2210. 10.1134/S0036024410130017Suche in Google Scholar
21. Chauhan, M. S., Kumar, G., Kumar, A. and Chauhan, S.: Micellization of ionic surfactants in aqueous-rich region of organic solvents: a conductometric study of micellization behaviour of sodium dodecylsulfate in aqueous-rich region of 1-BuOH, 2-BuOH, t-BuOH at different temperatures.Colloid Surf A: Physicochem. Eng. Asp.166 (2000) 51–57. 10.1016/S0927-7757(99)00460-4Suche in Google Scholar
22. Turner, D., Gracie, K., Taylor, T. and Palepu, R.: Micellar and thermodynamic properties of sodium dodecyl sulfate in binary aqueous solutions of di-, tri-, and tetraethylene glycols. J. Colloid Interface Sci.202 (1998) 359–368. 10.1006/jcis.1998.5484Suche in Google Scholar
23. Bales, B. L.: A definition of the degree of ionization of a micelle based on its aggregation number. J. Phys. Chem. B105 (2001) 6798–6804. 10.1021/jp004576mSuche in Google Scholar
24. Zana, R.: Critical micellization concentration of surfactants in aqueous solution and free energy of micellization. Langmuir12 (1996) 1208–1211. 10.1021/la950691qSuche in Google Scholar
25. Hoeiland, H. K. S. and Blokhus, A. M.: Handbook of Surface and Colloid Chemistry, 3rd ed., Taylor and Frances Group, LLC, London (2009).Suche in Google Scholar
26. Bakshi, M. S.: How surfactants control crystal growth of nanomaterials. Cryst. Growth Des.16 (2016) 1104–1133. 10.1021/acs.cgd.5b01465Suche in Google Scholar
27. Myers, D.: Surfactants Science and Technology, 2nd ed., VCH, New York (1992).Suche in Google Scholar
28. Zdziennicka, A., Szymczyk, K., Krawczyk, J. and Jańczuk, B.: Activity and thermodynamic parameters of some surfactants adsorption at the water-air interface. Fluid Phase Equil.318 (2012) 25–33. 10.1016/j.fluid.2012.01.014Suche in Google Scholar
29. Ali, A., Farooq, U., Uzair, S. and Patel, R.: Conductometric and tensiometric studies on the mixed micellar systems of surface-active ionic liquid and cationic surfactants in aqueous medium. J. Mol. Liq.223 (2016) 589–602. 10.1016/j.molliq.2016.08.082Suche in Google Scholar
30. Siddiqui, H., Kamal, M. and Fatima, N.: Surface and solution properties of single and mixed gemini/conventional micelles on solubilization of polycyclic aromatic hydrocarbons. Indian J. Chem. Technol.22 (2015) 194–200.Suche in Google Scholar
31. Jones, G. and Dole, M.: The viscosity of aqueous solutions of strong electrolytes with special reference to barium chloride, J. Am. Chem. Soc.51 (1929) 2950–2960. 10.1021/ja01385a012Suche in Google Scholar
32. Falkenhagen, H. and Dole, M.: Die innere reibung von elektrolytis-chen und ihre deutung nach der debeschen theorie. Z. Physik30 (1992) 611–622.Suche in Google Scholar
33. Stokes, R. H. and Mills, R.: Viscosity of Electrolytes and Related Properties, Aus der Series “The International Encyclopedia of Physical Chemistry and Chemical Physics”, Pergamon Press, New York, 1965.Suche in Google Scholar
34. Erdey-Gruz, T.: Transport Phenomena in Aqueous Solutions.Akademiai Kiado, Budapest (1974).Suche in Google Scholar
35. Feakins, D., Freemantle, D. J. and Lawrence, K. G.: Transition state treatment of the relative viscosity of electrolytic solutions. Applications to aqueous, non-aqueous and methanol+water systems, J. Chem. Soc. Faraday Trans.70 (1974) 795806. 10.1039/F19747000795Suche in Google Scholar
36. Feakins, D., Bates, F. M., Waghorne, W. E. and Lawrence, K. G.: Relative viscosities and quasi-thermodynamics of solutions of tert-butyl alcohol in the methanol-water systems, J. Chem. Soc. Faraday Trans.89 (1993) 3381–3388. 10.1039/FT9938903381Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles