Startseite Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants

  • Omnia A. A. El-Shamy und Maher I. Nessim
Veröffentlicht/Copyright: 6. September 2017
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Three series of cationic gemini surfactants were prepared and characterized using elemental analysis and 1H-NMR spectroscopy. The surface properties of them, critical micelle concentration (CMC), surface excess concentration (Γmax) and minimum surface area per molecule (Amin) were evaluated via surface tension measurements. Quantum chemical parameters, such as the energy of the highest occupied molecular orbital (EH), the energy of the lowest unoccupied molecular orbital EL, the energy gap (ΔEg), dipole moment (μ), electronegativity (χ), hardness (η), electrophilicity (ω), hydrophobicity (Log P), approximated surface area (A) and the total energy of the optimized structure (ΔET), were theoretically calculated using the MNDO method.

Kurzfassung

Drei Reihen von kationischen Gemini-Tensiden wurden hergestellt und durch Elementaranalyse und 1H-NMR-Spektroskopie charakterisiert. Ihre Oberflächeneigenschaften, die kritische Mizellenbildungskonzentration (CMC), die Oberflächenüberschusskonzentration (Γmax) und der minimale Platzbedarf pro Molekül an der Oberfläche (Amin) wurden über Oberflächenspannungsmessungen berechnet. Quantenchemische Parameter, wie die Energie des höchsten besetzten Molekülorbitals (EH), die Energie des niedrigsten unbesetzten Molekülorbitals EL, die Energielücke (ΔEg), das Dipolmoment (μ), die Elektronegativität (χ), die Härte (η), die Elektrophilie (ω), die Hydrophobie (Log P), die angenäherte Oberfläche (A) und die Gesamtenergie der optimierten Struktur (ΔET) wurden nach der MNDO-Methode theoretisch berechnet.


*Correspondence address, Dr. Omnia A.A. El-Shamy, Egyptian Petroleum Research Institute, Nasr City, 11727, Cairo, Egypt, E-Mail:

Dr. Omnia A. A. El-Shamy was born in August 1975, studied for here M. Sc. at Mansoura University. She is completing her Ph. D. in 2008 from Ain Shams University, she is at present working as Associate Professor in the Department of Analysis and Evaluation, Egyptian Petroleum Research Institute (EPRI).

Dr. Maher I. Nessem was born in March 1962. He is completing his Ph. D. in 2004 from Cairo University, he is at present working as Associate Professor in the Department of Analysis and Evaluation, Egyptian Petroleum Research Institute (EPRI).


References

1. Zana, R.: Adv. Dimeric and oligomeric surfactants. Behavior at interfaces and in aqueous solution: A review, Adv. Colloid interface Sci.97 (2002) 205. 10.1016/S0001-686(01)00069-0Suche in Google Scholar

2. Pisarcik, M., Rosen, M. J., Polakovicova, M., Devinsky, F. and Lacko, I.: Area per surfactant molecule values of gemini surfactants at the liquid – hydrophobic solid interface, J. Colloid interface Sci.289 (2005) 560. 10.1016/j.jcis.2005.03.092Suche in Google Scholar

3. Zana, R. and Xia, J. D.: Gemini Surfactants, Dekker, New York, (2004).Suche in Google Scholar

4. Lu, T., Han, F., Mao, G. R., Lin, G. F., Huang, J. B., Huang, X., Wang, Y. L. and Fu, H. L.: Effect of hydrocarbon parts of the polar head group on surfactants aggregates in gemini an bola surfactant solutions, Langmuir23 (2007) 2932. PMid:1729102210.1021/la063435uSuche in Google Scholar

5. Zana, R., Benrraou, M. and Rueff, M.: Alkanediyl-.alpha-omega.-bis (dimethylalkyl ammonium bromide) surfactants. 1. Effect of the spacer chain length on the critical micelle concentration and micelle ionization degree, Langmuir7 (1991) 1072. 10.1021/la00054a008Suche in Google Scholar

6. Zana, R.: in Noval surfactants. Preparation, Application and Biodegradability (K.Holmberg ed.) Mracel Dekker, New York (1998) 241.Suche in Google Scholar

7. Khalil, N.: Quantum chemical approach of corrosion inhibition, Electrochim Acta48 (2003) 2635. 10.1016/S0013-4686(03)00307-4Suche in Google Scholar

8. Behpour, M., Ghoreishi, S. M., Soltani, N., Salavati-Niasari, M., Hamadanian, M. and Gandomi, A.: Electrochemical and theoretical investigation on the corrosion inhibition of mild steel by thiosalicylaldehyde derivatives in hydrochloric acid solution, Corros Sci50 (2008)2172. 10.1016/j.corsci.2008.06.020Suche in Google Scholar

9. Masoud, M. S., Awad, M. K., Shaker, M. A. and El-Tahawy, M. T.: The role of structural chemistry in the inhibitive performance of some aminopyrimidines on the corrosion of steel, Corros Sci52 (2010)2387. 10.1016/j.corsci.2010.04.011Suche in Google Scholar

10. OmniaA. A.El-Shamy: International Journal of Corrosion, Semiempirical Theoretical Studies of 1, 3-Benzodioxole Derivatives as Corrosion Inhibitors2017 (2017) 1. 10.1155/2017/8915967Suche in Google Scholar

11. Al-Sabagh, A. M., Kandile, N. Gh., Nasser, N. M., Mishrif, M. R. and Amira E.El-Tabey: Novel surfactants incorporated with 1,3,5-triethanolhexahydro-1,3,5-triazine moiety as corrosion inhibitors for carbon steel in hydrochloric acid: Electrochemical and quantum chemical investigations, Egyptian Journal of Petroleum22 (2013) 251. 10.1016/j.ejpe.2013.10.004Suche in Google Scholar

12. El Achouri, M., Infante, M. R., Izquierdo, F., Kertit, S., Gouttaya, H. M. and Nciri, B.: Synthesis of some cationic gemini surfactants and their inhibitive effect on iron corrosion in hydrochloric acid medium, Corr Sci.43 (2001) 19. 10.1016/S0010-938X(00)00063-9Suche in Google Scholar

13. Del Bene, J. E., Person, W. B. and Szczepaniak, K.: Properties of Hydrogen-Bonded Complexes Obtained from the B3LYP Functional with 6-31G (d, p) and 6-31+ G (d, p) Basis Sets: Comparison with MP2/6-31+ G (d, p) Results and Experimental Data, J. Phys. Chem.99 (1995) 10705. 10.1021/j100027a005Suche in Google Scholar

14. Awad, M. K.: Semiempirical investigation of the inhibition efficiency of thiourea derivatives as corrosion inhibitors, J Electroanal Chem567 (2004) 219. 10.1016/j.jelechem.2003.12.028Suche in Google Scholar

15. Kamboj, R., Singh, S. and Chauhan, V.: Synthesis, characterization and surface properties of N-(2-hydroxyalkyl)-N-(2-hydroxyethyl) imidazolium surfactants, Colloids Surf. A: Physicochem. Eng. Asp.441 (2014) 233. 10.1016/j.colsurfa.2013.08.063Suche in Google Scholar

16. El-Feky, M. A., Shalaby, M. N. and El-Shamy, O. O. A.: Polymers as hydrophobic adsorbent surface for some surfactants, J. Disp. Sci. and Technol.30 (2009) 445450. 10.1080/01932690802548536Suche in Google Scholar

17. El-Feky, M. A., Shalaby, M. N. and El-Shamy, O. O. A.: Adsorption of some surfactants onto polyvinyl alcohol as hydrophobic polymer surface, J. Didp. Sci. and Technol.30 (2010) 1091. 10.1080/01932690802548536Suche in Google Scholar

18. Hao, Y. R., Yue, X., Wang, X. D., Huang, D. D. and Chen, X.: Micelle formation by Nalkyl-N-methylpiperidinium bromide ionic liquids in aqueous solution, Colloids Surf. A: Physicochem. Eng. Asp.412 (2012) 90. 10.1016/j.colsurfa.2012.07.021Suche in Google Scholar

19. Rosen, M. J.: Surfactants and Interfacial Phenomena, 2nd ed., Wiley-Interscience, New York, 1989.Suche in Google Scholar

20. Borse, M., Sharma, V., Aswal, V. K., Goyal, P. S. and Devi, S.: Effect of head group polarity and spacer chain length on the aggregation properties of gemini surfactants in an aquatic environment, J. Colloid and Interface Sci.284 (2005) 282. PMid:15752815; 10.1016/j.jcis.2004.10.008Suche in Google Scholar PubMed

21. De, S., Aswaln, V. K., Goyal, S. and Bhattacharya: Role of Spacer Chain Length in Dimeric Micellar Organization. Small Angle Neutron Scattering and Fluorescence Studies, J. phys. Chem.100 (1996) 6152. 10.1021/jp9535598Suche in Google Scholar

22. Bentiss, F., Traisnel, M., Vezin, H., Hildbran, H. F. and Largrenee, M.: 2, 5-Bis (4-dimethylminophenyl)-1,3,4–hiadiazole as corrosion inhibitors for mild steel in acidic media, Corr. Sci.46 (2004) 2781. 10.1016/j.corsci.2004.04.001Suche in Google Scholar

23. Obot, I. B. and Obi-Egbedi, N. O.: Anti-Corrosive properties of xanthone on mild steel corrosion in suphuric acid: Experimental and theoretical investigations. Curr App Phys.11 (2011) 382392. 10.1016/j.cap.2010.08.007Suche in Google Scholar

24. Mert, B. D., Mert, M. E., Kardas, M. E. and Yazici, G.: Experimental and theoretical investigation of 3-amino-1, 2, 4-triazole-5-thiol as a corrosion inhibitor for carbon steel in HCl medium, Corros. Sci.53 (2011) 4265. 10.1016/j.cap.2010.08.007Suche in Google Scholar

25. Obot, I. B., Macdonald, D. D. and Gasem, Z. M.: Density functional theory (DFT) as a powerful tool for designing new organic corrosion inhibitors. Part 1: An Overview, Corros. Sci.99 (2015) 1. 10.1016/j.corsci.2015.01.037Suche in Google Scholar

26. Parr, R. G., Szentpály, László, v. and Shubin, L.: Electrophilicity index, J. Am. Chem. Soc.121 (1999) 1922. 10.1021/ja983494xSuche in Google Scholar

Received: 2017-04-11
Accepted: 2017-06-07
Published Online: 2017-09-06
Published in Print: 2017-09-15

© 2017, Carl Hanser Publisher, Munich

Heruntergeladen am 9.10.2025 von https://www.degruyterbrill.com/document/doi/10.3139/113.110522/html
Button zum nach oben scrollen