Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
-
Sunil Kumar
und Ajay Mandal
Abstract
The present work deals with the physiochemical properties of polyoxyethylene sorbitan fatty acid esters (polysorbates), which are commonly known under the trade name Tween. Thermodynamics of micellization and adsorption at air-water interface for these nonionic surfactants solutions have been studied over a broad range of temperature. As the temperature of the surfactant solutions increases, the surface tension decreases whereas the critical micelle concentration (CMC) of each surfactant solution initially decreases and then increases. The free Gibb free energies of the micelle formation
Kurzfassung
Die vorliegende Arbeit beschäftigt sich mit den physiochemischen Eigenschaften von Polyoxyethylensorbitanfettsäureestern (Polysorbate), die unter dem Handelsnamen Tween bekannt sind. Die Thermodynamik der Mizellenbildung und der Adsorption an der Luft-Wasser-Grenzfläche für diese nichtionischen Tensidlösungen wurde über einen breiten Temperaturbereich untersucht. Wenn die Temperatur der Tensidlösungen zunimmt, nimmt die Oberflächenspannung ab, während die kritische Mizellenbildungskonzentration (CMC) jeder Tensidlösung anfänglich abnimmt und dann zunimmt. Die freie Gibb-Energie der Mizellenbildung
References
1. Zhou, X., Dong, M. and Maini, B.: The dominant mechanism of enhanced heavy oil recovery by chemical flooding in two dimensional physical model; Fuel108 (2013) 261–268. 10.1016/j.fuel.2013.02.012Suche in Google Scholar
2. Reed, R. L. and Healy, R. N: Some physicochemical aspects of microemulsion flooding: a review, in: Shah, D. O. and Schecheter, R. S. (Ed.), Improved Oil Recovery by Surfactant and Polymer Flooding, Academic Press (1977) 383. 10.1016/B978-0-12-641750-0.50017-7Suche in Google Scholar
3. Chatzis, I. and Morrow, N. R.: Correlation of capillary number relationships for sandstone; SPE J.24 (1984) 555–562. 10.2118/10114-PASuche in Google Scholar
4. Schramm, L. L.: Surfactant Induced Wettability Alteration in porous Media. In: Spinler, E. A., Baldwin, B. A., Toriumi, A. (Ed.), Surfactants Fundamentals and applications in the petroleum industry, Cambridge University Press (2000) 159–189. 10.1017/CBO9780511524844Suche in Google Scholar
5. Kumar, S. and Mandal, A.: Studies on interfacial behavior and wettability change phenomena by ionic and nonionic surfactants in presence of alkalis and salt for enhanced oil recovery; Journal of Applied Surface Science372 (2016) 42–51. 10.1016/j.apsusc.2016.03.024Suche in Google Scholar
6. Kumar, S., Panigrahi, P., Saw, R. K. and Mandal, A.: Interfacial interactions of cationic surfactants and its effect on wettability alteration of oil-wet carbonate rock; Energy Fuels30 (4) (2016) 2846–2857. 10.1021/acs.energyfuels.6b00152Suche in Google Scholar
7. Austad, T. and Milter, J.: Spontaneous imbibition of water into low permeable chalk at different wettabilities using surfactants; SPE 37236 presented at the International Symposium on Oilfield Chemistry, Houston, TX (1997). 10.2118/37236-MSSuche in Google Scholar
8. Standnes, D. C. and Austad, T.: Wettability alteration in chalk. 2. Mechanism for wettability alteration from oil-wet to water-wet using surfactant; J. Pet. Sci. Eng.28 (2000) 123–143. 10.1016/S0920-4105(00)00084-XSuche in Google Scholar
9. Spinler, E. A., Zornes, D. R., Tobola, D. P. and Moradi-Araghi, A.: Enhancement of oil recovery using a low concentration of surfactant to improve spontaneous and forced imbibition in chalk; SPE 59290 presented at the SPE/DOE Improved Oil Recovery Symposium, Tulsa, OK (2000). 10.2118/59290-MSSuche in Google Scholar
10. ShengJ. J.: Status of surfactant EOR technology, Petroleum1 (2) (2015) 97–105. 10.1016/j.petlm.2015.07.003Suche in Google Scholar
11. Howe, A. M., Clarke, A., Mitchell, J., Staniland, J., Hawkes, L. and Whalan, C.: Visualising surfactant enhanced oil recovery; Colloids and Surfaces A: Physicochem. Eng. Aspects480 (2015) 449–461. 10.1016/j.colsurfa.2014.08.032Suche in Google Scholar
12. Ko, K. M., Chon, B. H., Jang, S. B. and Jang, H. Y.: Surfactant flooding characteristics of dodecyl alkyl sulfate for enhanced oil recovery; Journal of Industrial and Engineering Chemistry20 (2014) 228–233. 10.1016/j.jiec.2013.03.043Suche in Google Scholar
13. Mandal, A., Kar, S. and Kumar, S.: Synergistic Effect of Mixed Surfactant (Tween 80 and SDBS) on Wettability Alteration of Oil Wet Quartz Surface; Journal of Dispersion Science and Technology37 (9) (2015) 1268–1276. 10.1080/01932691.2015.1089780Suche in Google Scholar
14. Zhang, D. L., Liu, S., Puerto, M., Miller, C. A. and Hirasaki, G. J.: Wettability alteration and spontaneous imbibition in oil-wet carbonate formations; Journal of Petroleum Science and Engineering52 (2006) 213–226. 10.1016/j.petrol.2006.03.009Suche in Google Scholar
15. Falode, O. and Manuel, E.: Wettability Effects on Capillary Pressure, Relative Permeability, and Irredcucible Saturation Using Porous Plate; Hindawi Publishing Corporation Journal of Petroleum Engineering465418 (2014). 10.1155/2014/465418Suche in Google Scholar
16. Somasundaran, P. and Zhang, L.: Adsorption of surfactants on minerals for wettability control in improved oil recovery processes; Journal of Petroleum Science and Engineering52 (2006) 198–212. 10.1016/j.petrol.2006.03.022Suche in Google Scholar
17. Bera, A., Mandal, A. and Kumar, T.: Effect of Rock-Crude oil-Fluid Interactions on Wettability Alteration of Oil-Wet Sandstone in Presence of Surfactants; Journal of Petroleum Science and Technology33 (5) (2015) 542–549. 10.1080/10916466.2014.998768Suche in Google Scholar
18. Price, L. C.: Aqueous solubility of petroleum as applied to its origin and primary migration, AAPG Bulletin60 (1976) 213–244. 10.1306/83D922A8-16C7-11D7-8645000102C1865DSuche in Google Scholar
19. Al-Sahhaf, T., Elkamel, A., Ahmed, S. A. and Khan, A. R.: The influence of temperature, pressure, salinity and surfactant concentration on the interfacial tension of the n-octane-water system; Chemical Engineering Communications192 (2005) 667–684. 10.1080/009864490510644Suche in Google Scholar
20. Bai, J., Fan, W., Nan, G., Li, S. and Yu, B.: Influence of interaction between heavy oil components and petroleum sulfonate on the oil-water interfacial tension; Journal of Dispersion Science and Technology31 (2010) 551–556. 10.1080/01932690903167475Suche in Google Scholar
21. Prosser, A. J. and Franses, E. I.: Adsorption and surface tension of ionic surfactants at the air-water interface: review and evaluation of equilibrium models; Colloids and Surfaces A: Physicochemical and Engineering Aspects178 (2001) 1–40. 10.1016/S0927-7757(00)00706-8Suche in Google Scholar
22. Blandamer, M. J., Cullis, P. M., Soldi, L. G., Engberts, J. B., KacperskaA., Van OsN. M. and Subha, M. C.: Thermodynamics of micellar systems: comparison of mass action and phase equilibrium models for the calculation of standard Gibbs energies of micelle formation; Adv. Colloid Interface Sci.58 (2–3) (1995) 171–209. 10.1016/0001-8686(95)00252-LSuche in Google Scholar PubMed
23. Al-Anber, Z. A., Josep, B. A. and Mackie, A. D.: Prediction of the critical micelle concentration in a lattice model for amphiphiles using a single-chain mean-field theory; The Journal of Chemical Physics122 (2005) 104910. PMid:15836361; 10.1063/1.1860558Suche in Google Scholar PubMed
24. Loginova, L. P., Samokhina, L. V., Boichenko, A. P. and Kulikov, A. U.: Micellar liquid chromatography retention model based on mass-action concept of micelle formation; Journal of Chromatography A1104 (2006) 190–197. PMid:16376898; 10.1016/j.chroma.2005.11.135Suche in Google Scholar PubMed
25. Slavchov, R. I. and Georgiev, G. S.: Markov chain model for the critical micelle concentration of surfactant mixtures; Colloid Polym Sci.292 (2014) 2927–2937. 10.1007/s00396-014-3337-2Suche in Google Scholar
26. Evens, D. F. and Miller, D. D.: A reappraisal of the role of water in promoting amphiphilic assembly and structure, hydration phenomena in colloidal systems, Water science reviews: 4 Printed in Great Britain by the university press, Cambridge (1989). 10.1017/CBO9780511565373.001Suche in Google Scholar
27. Danov, K. D., Kralchevsky, P. A. and Ananthapadmanabhan, K. P.: Micelle–monomer equilibria in solutions of ionic surfactants and in ionic-nonionic mixtures: A generalized phase separation model; Advances in Colloid and Interface Science206 (2014) 17–45. PMid:23558017; 10.1016/j.cis.2013.02.001Suche in Google Scholar PubMed
28. Lim, K. H.: Thermal Behavior of Critical Micelle Concentration from the Standpoint of Flory-Huggins Model, Bull. Korean Chem. Soc.30 (9) (2009) 2001–2006. 10.5012/bkcs.2009.30.9.2001Suche in Google Scholar
29. Sahu, A., Choudhury, S., BeraA., Kar, S., Kumar, S. and Mandal, A.: Anionic-Nonionic Mixed Surfactant Systems: Micellar Interaction and Thermodynamic Behavior; Journal of Dispersion Science and Technology36 (8) (2015) 1156–1169. 10.1080/01932691.2014.958852Suche in Google Scholar
30. Sulthana, S. B., Bhat, S. G. T. and Rakshit, A. K.: Thermodynamics of micellization of a non-ionic surfactant Myrj 45: effect of additives; Colloids and Surfaces A: Physicochemical and Engineering Aspects111 (1996) 57–65. 10.1016/0927-7757(95)03491-9Suche in Google Scholar
31. Sharma, K. S. and Rakshit, A. K.: Thermodynamics of micellization and interfacial adsorption of polyoxyethylene (10) lauryl ether (C12E10) in water; Indian journal of chemistry43A (2004) 265–269. 35400011499101.0060Suche in Google Scholar
32. Adane, D. F.: Surface and thermodynamic studies of micellization of surfactants in binary mixtures of 1, 2-ethanediol and 1, 2, 3-propanetriol with water, International Journal of Physical Sciences10 (8) (2015) 276–288. 10.5897/IJPS2015.4288Suche in Google Scholar
33. Zhang, H., Yao, M., Morrison, A. R. and Chong, S.: Commonly Used Surfactant, Tween 80, Improves Absorption of P-Glycoprotein Substrate, Digoxin, in Rats; Arch Pharm Res26 (9) (2003) 768–772. PMid:14560928; 10.1007/BF02976689Suche in Google Scholar PubMed
34. Lee, D., Kim, E. and Chang, H.: Effect of Tween surfactant components for remediation of toluene-contaminated groundwater; Geosciences Journal9 (3) (2005) 261–267. 10.1007/BF02910586Suche in Google Scholar
35. Kumar, G. P. and Pogaku, R.: Nonionic surfactant vesicular systems for effective drug Delivery-an overview; Acta Pharmaceutica Sinica B1 (4) (2011) 208–219. 10.1016/j.apsb.2011.09.002Suche in Google Scholar
36. Basheer, H. S., Mohamed, I. N. and Mowafaq, M. G.: Characterization of Microemulsions Prepared using Isopropyl Palmitate with various Surfactants and Cosurfactants; Tropical Journal of Pharmaceutical Research12 (3) (2013) 305–310. 10.4314/tjpr.v12i3.5Suche in Google Scholar
37. Weiszhár, Z., Judit, C., Csaba, R., László, R., János, S. and Zoltán, R.: Complement activation by polyethoxylated pharmaceutical surfactants: Cremophor-EL, Tween-80 and Tween-20; European Journal of Pharmaceutical Sciences45 (2012) 492–498. PMid:21963457; 10.1016/j.ejps.2011.09.016Suche in Google Scholar PubMed
38. Samanta, S. and Ghosh, P.: Coalescence of bubbles and stability of foams in aqueous solutions of Tween surfactants; Chemical Engineering Research and Design89 (2011) 2344–2355. 10.1016/j.cherd.2011.04.006Suche in Google Scholar
39. Bak, A. and Podgórska, W.: Investigation of drop breakage and coalescence in the liquid–liquid system with nonionic surfactants Tween 20 and Tween80; Chemical Engineering Science74 (2012) 181–191. 10.1016/j.ces.2012.02.021Suche in Google Scholar
40. Patist, A., Kanicky, J. R., Shukla, P. K. and Shahy, D. O.: Importance of Micellar Kinetics in Relation to Technological Processes; Journal of Colloid and Interface Science245 (2002) 1–15. PMid:16290329; 10.1006/jcis.2001.7955Suche in Google Scholar PubMed
41. Besseling, N. A. M. and Binks, B. P.: Statistical thermodynamics of adsorption, micellisation and solubilisation in water–oil–surfactant systems; Faraday Discuss. The Royal Society of Chemistry104 (1996) 167–181. 10.1039/FD9960400167Suche in Google Scholar
42. Mohajeri, E. and Noudeh, G. D.: Effect of Temperature on the Critical Micelle Concentration and Micellization Thermodynamic of Nonionic Surfactants: PolyoxyethyleneSorbitan Fatty Acid Esters; E-Journal of Chemistry9 (4) (2012) 2268–2274. 10.1155/2012/961739Suche in Google Scholar
43. Sidim, T. and Acar, G.: Alcohols Effect on Critic Micelle Concentration of Polysorbate 20 and Cetyl Trimethyl Ammonium Bromine Mixed Solutions; Journal of Surfactants and Detergents16 (4) (2013) 601–607. PMid:23794797; 10.1007/s11743-012-1429-xSuche in Google Scholar PubMed PubMed Central
44. Cases, J. M. and Villieras, F.: Thermodynamic model of ionic and nonionic surfactants adsorption-abstraction on heterogeneous surfaces; Langmuir8 (5) (1992) 1251–1264. 10.1021/la00041a005Suche in Google Scholar
45. Lu, T., Lan, Y., Liu, C., Huang, J. and Wang, Y.: Surface properties, aggregation behavior and micellization thermodynamics of a class of gemini surfactants with ethyl ammonium headgroups; Journal of Colloid and Interface Science377 (2012) 222–230. PMid:22513166; 10.1016/j.jcis.2012.03.044Suche in Google Scholar PubMed
46. Mohamed, Z., Abubshait, S. A. and Bushlaibi, E. J.: Synthesis and Characterization of Some New Cationic Derivatives of Biological Interest; Journal of Surface Engineered Materials and Advanced Technology3 (3) (2013) 242–248. 10.4236/jsemat.2013.33032Suche in Google Scholar
47. Szymczyk, K. and Jańczuk, B.: The adsorption at solution–air interface and volumetric properties of mixtures of cationic and nonionic surfactants, Colloids and Surfaces A: Physicochemical and Engineering Aspects293 (1–3) (2007) 39–50. 10.1016/j.colsurfa.2006.07.006Suche in Google Scholar
48. Shah, V., Bharatiya, B., Shah, D. O. and Mukherjee, T.: Correlation of Dynamic Surface Tension with Sedimentation of PTFE Particles and Water Penetration in Powders, Langmuir31 (2015) 13725–13733. PMid:26625137; 10.1021/acs.langmuir.5b03725Suche in Google Scholar PubMed
49. Haiyang, Y. U., Wang, Y., Zhang, Y., Zhang, P. and Chen, W.: Effects of displacement efficiency of surfactant flooding in high salinity reservoir: interfacial tension, emulsification, adsorption; Advances in Petroleum Exploration and Development1 (2011) 32–39. 10.3968/j.aped.1925543820110101.004Suche in Google Scholar
50. Babu, K., Pal, N., Bera, A., Saxena, V. K. and Mandal, A.: Studies on interfacial tension and contact angle of synthesized surfactant and polymeric from castor oil for enhanced oil recovery; Applied Surface Science353 (2015) 1126–1136. 10.1016/j.apsusc.2015.06.196Suche in Google Scholar
51. Jarrahian, K., Seiedi, O., Sheykhan, M., Sefti, M. V. and Ayatollahi, S.: Wettability alteration of carbonate rocks by surfactants: A mechanistic study; Colloids and surface A: Physicochem. Eng. Aspects410 (2012) 1–10. 10.1016/j.colsurfa.2012.06.007Suche in Google Scholar
52. Standal, S., Haavik, J. and Blokhus, A.: Effect of polar organic components on wettability as studied by adsorption and contact angles; J. Pet. Sci. Eng.24 (1999) 131–144. 10.1016/S0920-4105(99)00037-6Suche in Google Scholar
53. Bera, A., Kissmathulla, S., Ojha, K., Kumar, T. and Mandal, A.: Mechanistic Study of Wettability Alteration of Quartz Surface Induced by Nonionic Surfactants and Interaction between Crude Oil and Quartz in the Presence of Sodium Chloride Salt; Energy & Fuels26 (2012) 3634–3643. 10.1021/ef300472kSuche in Google Scholar
54. Shedid, S. A. and Ghannam, M. T.: Factors affecting contact-angle measurement of reservoir rocks; Journal of Petroleum Science and Engineering44 (2004) 193–203. 10.1016/j.petrol.2004.04.002Suche in Google Scholar
© 2017, Carl Hanser Publisher, Munich
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles
Artikel in diesem Heft
- Contents/Inhalt
- Contents
- Detergents/Cleaning
- Application of Glycerin in Liquid Laundry Detergents as an Example of Innovation in the Household Chemicals Industry
- Application
- Characterization of Pyrene Solubilization in Selective Micellar Media of Novel Bio-degradable Natural Surfactant Saponin (Extracted from Soap Nut) and Conventional Surfactant SDBS in Presence and Absence of Common Salt NaCl
- The Effect of pH on the Properties of a Cationic Bitumen Emulsifier
- The Role of Fatty Acids Functional Group in Morinda citrifolia L. on Surface Tension and Diffusion Performance into Ink Particles
- Physical Chemistry
- Effect of Some Vitamins of Group B (B1, B6, B12) on Micellar and Viscosity Properties of Anionic, Cationic and Nonionic Surfactants in Aqueous Solutions
- Phase Behavior and Solubilization of Microemulsions Containing C16mimBr with Different Oil-Water Ratios
- Thermodynamics of Micellization, Interfacial Behavior and Wettability Alteration of Aqueous Solution of Nonionic Surfactants
- Novel Surfactants
- Synthesis and Properties of a Novel Gemini Surfactant with Bis-piperidinium
- Surface Activities and Quantum Chemical Calculations for Different Synthesized Cationic Gemini Surfactants
- Effect of Novel Surfactant on the Growth Kinetics of Cobalt Nanoparticles