A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
Abstract
Direct production of ethyl levulinate (EL) from glucose catalysed by a liquid acid catalyst (sulfuric acid) and a solid acid zeolite catalyst USY NKF-7 (USY) in ethanol media was investigated in this study. Effects of the initial glucose concentration (C G0), reaction temperature (T), amount of acid catalyst, and water addition on the yields of EL were compared, respectively. The results show that higher yield of EL can be obtained at lower C G0. Higher temperature and acid concentration can accelerate the reaction rate, but the formation rate of the by-products increases more quickly than that of EL. Water addition also can result in the decrease of the yield of EL. Although sulfuric acid is efficient in the production of EL, the USY is more efficient in converting glucose to 5-ethoxymethyl-2-furaldehyde. Moreover, the use of USY can limit the diethyl ether production, and it can be reused for multiple times.
[1] Bozell, J. J., & Petersen, G. R. (2010). Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy’s “Top 10” revisited. Green Chemistry, 12, 539–554. DOI: 10.1039/b922014c. http://dx.doi.org/10.1039/b922014c10.1039/b922014cSuche in Google Scholar
[2] Chang, C., Jiang, X. X., Zhang, T., & Li, B. (2012a). Effect of reaction parameters on the production of ethyl levulinate from glucose in ethanol. Advanced Materials Research, 512–515, 388–391. DOI: 10.4028/www.scientific.net/amr.512-515.388. http://dx.doi.org/10.4028/www.scientific.net/AMR.512-515.38810.4028/www.scientific.net/AMR.512-515.388Suche in Google Scholar
[3] Chang, C., Xu, G., & Jiang, X. (2012b). Production of ethyl levulinate by direct conversion of wheat straw in ethanol media. Bioresource Technology, 121, 93–99. DOI: 10.1016/j.biortech.2012.06.105. http://dx.doi.org/10.1016/j.biortech.2012.06.10510.1016/j.biortech.2012.06.105Suche in Google Scholar
[4] Chia, M., & Dumesic, J. A. (2011). Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. Chemical Communications, 47, 12233–12235. DOI: 10.1039/c1cc14748j. http://dx.doi.org/10.1039/c1cc14748j10.1039/c1cc14748jSuche in Google Scholar
[5] Dharne, S., & Bokade, V. V. (2011). Esterification of levulinic acid to n-butyl levulinate over heteropolyacid supported on acid-treated clay. Journal of Natural Gas Chemistry, 20, 18–24. DOI: 10.1016/s1003-9953(10)60147-8. http://dx.doi.org/10.1016/S1003-9953(10)60147-810.1016/S1003-9953(10)60147-8Suche in Google Scholar
[6] Fernandes, D. R., Rocha, A. S., Mai, E. F., Mota, C. J. A., & Teixeira da Silva, V. (2012). Levulinic acid esterification with ethanol to ethyl levulinate production over solid acid catalysts. Applied Catalysis A: General, 425-426, 199–204. DOI: 10.1016/j.apcata.2012.03.020. http://dx.doi.org/10.1016/j.apcata.2012.03.02010.1016/j.apcata.2012.03.020Suche in Google Scholar
[7] Garves, K. (1988). Acid catalyzed degradation of cellulose in alcohols. Journal of Wood Chemistry and Technology, 8, 121–134. DOI: 10.1080/02773818808070674. http://dx.doi.org/10.1080/0277381880807067410.1080/02773818808070674Suche in Google Scholar
[8] Gürbüz, E. I., Alonso, D. M., Bond, J. Q., & Dumesic, J. A. (2011). Reactive extraction of levulinate esters and conversion to γ-valerolactone for production of liquid fuels. Chem-SusChem, 4, 357–361 DOI: 10.1002/cssc.201000396. 10.1002/cssc.201000396Suche in Google Scholar PubMed
[9] Hu, X., Lievens, C., Larcher, A., & Li, C. Z. (2011). Reaction pathways of glucose during esterification: Effects of reaction parameters on the formation of humin type polymers. Bioresource Technology, 102, 10104–10113. DOI: 10.1016/j.biortech.2011.08.040. http://dx.doi.org/10.1016/j.biortech.2011.08.04010.1016/j.biortech.2011.08.040Suche in Google Scholar PubMed
[10] Joshi, H., Moser, B. R., Toler, J., Smith, W. F., & Walker, T. (2011). Ethyl levulinate: A potential bio-based diluent for biodiesel which improves cold flow properties. Biomass and Bioenergy, 35, 3262–3266. DOI: 10.1016/j.biombioe.2011.04.020. http://dx.doi.org/10.1016/j.biombioe.2011.04.02010.1016/j.biombioe.2011.04.020Suche in Google Scholar
[11] Lange, J. P., van de Graaf, W. D., & Haan, R. J. (2009). Conversion of furfuryl alcohol into ethyl levulinate using solid acid catalysts. ChemSusChem, 2, 437–441. DOI: 10.1002/cssc.200800216. http://dx.doi.org/10.1002/cssc.20080021610.1002/cssc.200800216Suche in Google Scholar PubMed
[12] Lee, A., Chaibakhsh, N., Abdul Rahman, M. B., Basri, M., & Tejo, B. A. (2010). Optimized enzymatic synthesis of levulinate ester in solvent-free system. Industrial Crops and Products, 32, 246–251. DOI: 10.1016/j.indcrop.2010.04.022. http://dx.doi.org/10.1016/j.indcrop.2010.04.02210.1016/j.indcrop.2010.04.022Suche in Google Scholar
[13] Le Van Mao, R., Zhao, Q., Dima, G., & Petraccone, D. (2011). New process for the acid-catalyzed conversion of cellulosic biomass (AC3B) into alkyl levulinates and other esters using a unique one-pot system of reaction and product extraction. Catalysis Letters, 141, 271–276. DOI: 10.1007/s10562-010-0493-y. http://dx.doi.org/10.1007/s10562-010-0493-y10.1007/s10562-010-0493-ySuche in Google Scholar
[14] Mascal, M., & Nikitin, E. B. (2010a). Comment on processes for the direct conversion of cellulose or cellulosic biomass into levulinate esters. ChemSusChem, 3, 1349–1351. DOI: 10.1002/cssc.201000326. http://dx.doi.org/10.1002/cssc.20100032610.1002/cssc.201000326Suche in Google Scholar PubMed
[15] Mascal, M., & Nikitin, E. B. (2010b). High-yield conversion of plant biomass into the key value-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinic esters via 5-(chloromethyl)furfural. Green Chemistry, 12, 370–373. DOI: 10.1039/b918922j. http://dx.doi.org/10.1039/b918922j10.1039/B918922JSuche in Google Scholar
[16] Murat Sen, S., Henao, C. A., Braden, D. J., Dumesic, J. A., & Maravelias, C. T. (2012). Catalytic conversion of lignocellulosic biomass to fuels: Process development and technoeconomic evaluation. Chemical Engineering Science, 67, 57–67. DOI: 10.1016/j.ces.2011.07.022. http://dx.doi.org/10.1016/j.ces.2011.07.02210.1016/j.ces.2011.07.022Suche in Google Scholar
[17] Olson, E. S., Kjelden, M. R., Schlag, A. J., & Sharma, R. K. (2001). Levulinate esters from biomass wastes. ACS Symposium Series, 784, 51–63. DOI: 10.1021/bk-2001-0784.ch005. http://dx.doi.org/10.1021/bk-2001-0784.ch00510.1021/bk-2001-0784.ch005Suche in Google Scholar
[18] Peng, L., Lin, L., Li, H., & Yang, Q. (2011a). Conversion of carbohydrates biomass into levulinate esters using heterogeneous catalysts. Applied Energy, 88, 4590–4596. DOI: 10.1016/j.apenergy.2011.05.049. http://dx.doi.org/10.1016/j.apenergy.2011.05.04910.1016/j.apenergy.2011.05.049Suche in Google Scholar
[19] Peng, L., Lin, L., Zhang, J., Shi, J., & Liu, S. (2011b). Solid acid catalyzed glucose conversion to ethyl levulinate. Applied Catalysis A: General, 397, 259–265. DOI: 10.1016/j.apcata.2011.03.008. http://dx.doi.org/10.1016/j.apcata.2011.03.00810.1016/j.apcata.2011.03.008Suche in Google Scholar
[20] Peng, L., Lin, L., & Li, H. (2012). Extremely low sulfuric acid catalyst system for synthesis of methyl levulinate from glucose. Industrial Crops and Products, 40, 136–144. DOI: 10.1016/j.indcrop.2012.03.007. http://dx.doi.org/10.1016/j.indcrop.2012.03.00710.1016/j.indcrop.2012.03.007Suche in Google Scholar
[21] Rataboul, F., & Essayem, N. (2011). Cellulose reactivity in supercritical methanol in the presence of solid acid catalysts: Direct synthesis of methyl-levulinate. Industrial & Engineering Chemistry Research, 50, 799–805. DOI: 10.1021/ie101616e. http://dx.doi.org/10.1021/ie101616e10.1021/ie101616eSuche in Google Scholar
[22] Saravanamurugan, S., & Riisager, A. (2012). Solid acid catalysed formation of ethyl levulinate and ethyl glucopyranoside from mono- and disaccharides. Catalysis Communications, 17, 71–75. DOI: 10.1016/j.catcom.2011.10.001. http://dx.doi.org/10.1016/j.catcom.2011.10.00110.1016/j.catcom.2011.10.001Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate
Artikel in diesem Heft
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate