Startseite Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications

  • Yan Lv EMAIL logo , Kun Li und Yapeng Li
Veröffentlicht/Copyright: 28. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, amphiphilic chitosan derivatives (N-octyl-N-mPEG-chitosan, mPEG = poly(ethylene glycol) monomethyl ether; OPEGC) were successfully synthesised via the Schiff base reduction reaction of chitosan and mPEG-aldehyde, or octanal, with chitosan acting as the backbone of the grafted copolymers, and mPEG-aldehyde providing the hydrophilic chain or octanal providing the hydrophobic alkyl chain. The synthesis was confirmed by characterisation employing Fourier transform infrared spectroscopy (FTIR) and 1H NMR. In the subsequent procedure, water-soluble quantum dots (QDs) and iron(II,III) oxide (IO) nanoparticles, widely used as nanoprobes in medical applications, were produced by the incorporation of QDs or IO inside the polymeric micelle core. Finally, the optical properties of QDs incorporated into OPEGC (OPEGC@QDs) were characterised by UV-VIS spectroscopy, fluorescence spectroscopy, cell viability was obtained through MTT, and the morphology of their assembly formed in water were observed by atomic force microscope (AFM) and transmission electron microscope (TEM) and the QDs content of OPEGC@QDs was calculated following thermo gravimetric analysis (TGA). In addition, the properties of IO incorporated into OPEGC (OPEGC@IO) were characterised by vibrating sample magnetometry (VSM), FT-IR, MTT, TGA, AFM, and TEM. The results indicated that the OPEGC composite nanoparticles with size narrowly distributed, good water solubility, and low cytotoxicity were prepared here, which represented a high quantum yield or good super-paramagnetism.

[1] Alivisatos, P. (2004). The use of nanocrystals in biological detection. Nature Biotechnology, 22, 47–52. DOI: 10.1038/nbt927. http://dx.doi.org/10.1038/nbt92710.1038/nbt927Suche in Google Scholar

[2] Bahadur, K. C. R., Lee, S. M., Yoo, E. S., Choi, J. H., & Ghim, H. D. (2009). Glycoconjugated chitosan stabilized iron oxide nanoparticles as a multifunctional nanoprobe. Materials Science and Engineering: C, 29, 1668–1673. DOI: 10.1016/j.msec.2009.01.005. http://dx.doi.org/10.1016/j.msec.2009.01.00510.1016/j.msec.2009.01.005Suche in Google Scholar

[3] Bruchez, M., Jr., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. (1998). Semiconductor nanocrystals as fluorescent biological labels. Science, 281, 2013–2016. DOI: 10.1126/science.281.5385.2013. http://dx.doi.org/10.1126/science.281.5385.201310.1126/science.281.5385.2013Suche in Google Scholar

[4] Chan, D. C. F., Kirpotin, D. B., & Bunn, P. A., Jr. (1993). Synthesis and evaluation of colloidal magnetic iron oxides for the site-specific radiofrequency-induced hyperthermia of cancer. Journal of Magnetism and Magnetic Materials, 122, 374–378. DOI: 10.1016/0304-8853(93)91113-l. http://dx.doi.org/10.1016/0304-8853(93)91113-L10.1016/0304-8853(93)91113-LSuche in Google Scholar

[5] Chang, E., Miller, J. S., Sun, J. T., Yu, W. W., Colvin, V. L., Drezek, R., & West, J. L. (2005). Protease-activated quantum dot probes. Biochemical and Biophysical Research Communications, 334, 1317–1321. DOI: 10.1016/j.bbrc.2005.07.028. http://dx.doi.org/10.1016/j.bbrc.2005.07.02810.1016/j.bbrc.2005.07.028Suche in Google Scholar PubMed

[6] Chang, Y. L., Meng, X. L., Zhao, Y. L., Li, K., Zhao, B., Zhu, M., Li, Y. P., Chen, X. S., & Wang, J. Y. (2011). Novel water-soluble and pH-responsive anticancer drug nanocarriers: Doxorubicin-PAMAM dendrimer conjugates attached to superparamagnetic iron oxide nanoparticles (IONPs). Journal of Colloid and Interface Science, 363, 403–409. DOI: 10.1016/j.jcis.2011.06.086. http://dx.doi.org/10.1016/j.jcis.2011.06.08610.1016/j.jcis.2011.06.086Suche in Google Scholar PubMed

[7] Chouly, C., Pouliquen, D., Lucet, I., Jeune, J. J., & Jallet, P. (1996). Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. Journal of Microencapsulation, 13, 245–255. DOI: 10.3109/02652049609026013. http://dx.doi.org/10.3109/0265204960902601310.3109/02652049609026013Suche in Google Scholar PubMed

[8] Dyal, A., Loos, K., Noto, M., Chang, S. W., Spagnoli, C., Shafi, K. V. P. M., Ulman, A., Cowman, M., & Gross, R. A. (2003). Activity of Candida rugosa lipase immobilized on γ-Fe2O3 magnetic nanoparticles. Journal of the American Chemical Society, 125, 1684–1685. DOI: 10.1021/ja021223n. http://dx.doi.org/10.1021/ja021223n10.1021/ja021223nSuche in Google Scholar PubMed

[9] Gao, X. H., Cui, Y. Y., Levenson, R. M., Chung, L. W. K., & Nie, S. M. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology, 22, 969–976. DOI: 10.1038/nbt994. http://dx.doi.org/10.1038/nbt99410.1038/nbt994Suche in Google Scholar PubMed

[10] Gupta, A. K., & Gupta, M. (2005). Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 26, 3995–4021. DOI: 10.1016/j.biomaterials.2004.10.012. http://dx.doi.org/10.1016/j.biomaterials.2004.10.01210.1016/j.biomaterials.2004.10.012Suche in Google Scholar PubMed

[11] Harris, J.M., Struck, E. C., Case, M. G., Paley, M. S., Yalpani, M., Van Alstine, J. M., & Brooks, D. E. (1984). Synthesis and characterization of poly(ethylene glycol) derivatives. Journal of Polymer Science: Polymer Chemistry Edition, 22, 341–352. DOI: 10.1002/pol.1984.170220207. http://dx.doi.org/10.1002/pol.1984.17022020710.1002/pol.1984.170220207Suche in Google Scholar

[12] Hines, M. A., & Guyot-Sionnest, P. (1996). Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals. Journal of Physical Chemistry, 100, 468–471. DOI: 10.1021/jp9530562. http://dx.doi.org/10.1021/jp953056210.1021/jp9530562Suche in Google Scholar

[13] Jiang, G. B., Quan, D. P., Liao, K. R., & Wang, H. H. (2006). Novel polymer micelles prepared from chitosan grafted hydrophobic palmitoyl groups for drug delivery. Molecular Pharmaceutics, 3, 152–160. DOI: 10.1021/mp050010c. http://dx.doi.org/10.1021/mp050010c10.1021/mp050010cSuche in Google Scholar

[14] Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349. DOI: 10.1016/s0142-9612(03)00026-7. http://dx.doi.org/10.1016/S0142-9612(03)00026-710.1016/S0142-9612(03)00026-7Suche in Google Scholar

[15] Kim, D. K., Zhang, Y., Kehr, J., Klason, T., Bjelke, B., & Muhammed, M. (2001). Characterization and MRI study of surfactant-coated superparamagnetic nanoparticles administered into the rat brain. Journal of Magnetism and Magnetic Materials, 225, 256–261. DOI: 10.1016/s0304-8853(00)01255-5. http://dx.doi.org/10.1016/S0304-8853(00)01255-510.1016/S0304-8853(00)01255-5Suche in Google Scholar

[16] Kondo, A., Kamura, H., & Higashitani, K. (1994). Development and application of thermo-sensitive magnetic immunomicrospheres for antibody purification. Applied Microbiology and Biotechnology, 41, 99–105. DOI: 10.1007/bf00166089. http://dx.doi.org/10.1007/BF0016608910.1007/BF00166089Suche in Google Scholar PubMed

[17] Lee, J., Sundar, V. C., Heine, J. R., Bawendi, M. G., & Jensen, K. F. (2000). Full color emission from II-VI semiconductor quantum dot-polymer composites. Advanced Materials, 12, 1102–1105. DOI: 10.1002/1521-4095(200008)12:15〈1102::aidadma1102〉3.0.co;2-j. http://dx.doi.org/10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-J10.1002/1521-4095(200008)12:15<1102::AID-ADMA1102>3.0.CO;2-JSuche in Google Scholar

[18] Miwa, A., Ishibe, A., Nakano, M., Yamahira, T., Itai, S., Jinno, S., & Kawahara, H. (1998). Development of novel chitosan derivatives as micellar carriers of taxol. Pharmaceutical Research, 15, 1844–1850. DOI: 10.1023/a:1011901921995. http://dx.doi.org/10.1023/A:101190192199510.1023/A:1011901921995Suche in Google Scholar

[19] Mohapatra, S., Pramanik, N., Ghosh, S. K., & Pramanik, P. (2006). Synthesis and characterization of ultrafine poly(vinylalcohol phosphate) coated magnetite nanoparticles. Journal of Nanoscience and Nanotechnology, 6, 823–829. DOI: 10.1166/jnn.2006.117. http://dx.doi.org/10.1166/jnn.2006.11710.1166/jnn.2006.117Suche in Google Scholar

[20] Mori, T., Okumura, M., Matsuura, M., Ueno, K., Tokura, S., Okamoto, Y., Minami, S., & Fujinaga, T. (1997). Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblasts in vitro. Biomaterials, 18, 947–951. DOI: 10.1016/s0142-9612(97)00017-3. http://dx.doi.org/10.1016/S0142-9612(97)00017-310.1016/S0142-9612(97)00017-3Suche in Google Scholar

[21] Murray, C. B., Norris, D. J., & Bawendi, M. G. (1993). Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. Journal of the American Chemical Society, 115, 8706–8715. DOI: 10.1021/ja00072a025. http://dx.doi.org/10.1021/ja00072a02510.1021/ja00072a025Suche in Google Scholar

[22] Neuberger, T., Schöpf, B., Hofmann, H., Hofmann, M., & von Rechenberg, B. (2005). Superparamagnetic nanoparticles for biomedical applications: Possibilities and limitations of a new drug delivery system. Journal of Magnetism and Magnetic Materials, 293, 483–496. DOI: 10.1016/j.jmmm.2005.01.064. http://dx.doi.org/10.1016/j.jmmm.2005.01.06410.1016/j.jmmm.2005.01.064Suche in Google Scholar

[23] Pellegrino, T., Manna, L., Kudera, S., Liedl, T., Koktysh, D., Rogach, A. L., Keller, S., Rädler, J., Natile, G., & Parak, W. J. (2004). Hydrophobic nanocrystals coated with an amphiphilic polymer shell: A general route to water soluble nanocrystals. Nano Letters, 4, 703–707. DOI: 10.1021/nl035172j. http://dx.doi.org/10.1021/nl035172j10.1021/nl035172jSuche in Google Scholar

[24] Qu, L. H., & Peng, X. G. (2002). Control of photoluminescence properties of CdSe nanocrystals in growth. Journal of the American Chemical Society, 124, 2049–2055. DOI: 10.1021/ja017002j. http://dx.doi.org/10.1021/ja017002j10.1021/ja017002jSuche in Google Scholar

[25] Reynolds, C. H., Annan, N., Beshah, K., Huber, J. H., Shaber, S. H., Lenkinski, R. E., & Wortman, J. A. (2000). Gadolinium-loaded nanoparticles: New contrast agents for magnetic resonance imaging. Journal of the American Chemical Society, 122, 8940–8945. DOI: 10.1021/ja001426g. http://dx.doi.org/10.1021/ja001426g10.1021/ja001426gSuche in Google Scholar

[26] Roy, K., Mao, H. Q., Huang, S. K., & Leong, K. W. (1999). Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy. Nature Medicine, 5, 387–391. DOI: 10.1038/7385. http://dx.doi.org/10.1038/738510.1038/7385Suche in Google Scholar

[27] Shieh, D.B., Cheng, F. Y., Su, C.H., Yeh, C. S., Wu, M. T., Wu, Y. N., Tsai, C. Y., Wu, C. L., Chen, D. H., & Chou, C. H. (2005). Aqueous dispersions of magnetite nanoparticles with NH 3+ surfaces for magnetic manipulations of biomolecules and MRI contrast agents. Biomaterials, 26, 7183–7191.DOI: 10.1016/j.biomaterials.2005.05.020. http://dx.doi.org/10.1016/j.biomaterials.2005.05.02010.1016/j.biomaterials.2005.05.020Suche in Google Scholar

[28] Thanou, M., Verhoef, J. C., & Junginger, H. E. (2001). Oral drug absorption enhancement by chitosan and its derivatives. Advanced Drug Delivery Reviews, 52, 117–126. DOI: 10.1016/s0169-409x(01)00231-9. http://dx.doi.org/10.1016/S0169-409X(01)00231-910.1016/S0169-409X(01)00231-9Suche in Google Scholar

[29] Thode, K., Lück, M., Schröder, W., Semmler, W., Blunk, T., Müller, R. H., & Kresse, M. (1997). The influence of the sample preparation on plasma protein adsorption patterns on polysaccharide-stabilized iron oxide particles and N-terminal microsequencing of unknown proteins. Journal of Drug Targeting, 5, 35–43. DOI: 10.3109/10611869708995856. http://dx.doi.org/10.3109/1061186970899585610.3109/10611869708995856Suche in Google Scholar

[30] Uchegbu, I. F., Sadiq, L., Arastoo, M., Gray, A. I., Wang, W., Waigh, R. D., & Schätzleinä, A. G. (2001). Quaternary ammonium palmitoyl glycol chitosan-a new polysoap for drug delivery. International Journal of Pharmaceutics, 224, 185–199. DOI: 10.1016/s0378-5173(01)00763-3. http://dx.doi.org/10.1016/S0378-5173(01)00763-310.1016/S0378-5173(01)00763-3Suche in Google Scholar

[31] Uyeda, H. T., Medintz, I. L., Jaiswal, J. K., Simon, S. M., & Mattoussi, H. (2005). Synthesis of compact multidentate ligands to prepare stable hydrophilic quantum dot fluorophores. Journal of the American Chemical Society, 127, 3870–3878. DOI: 10.1021/ja044031w. http://dx.doi.org/10.1021/ja044031w10.1021/ja044031wSuche in Google Scholar PubMed

[32] Wang, X. H., Du, Y. M., Ding, S., Wang, Q. Q., Xiong, G. G., Xie, M., Shen, X. C., & Pang, D. W. (2006). Preparation and third-order optical nonlinearity of selfassembled chitosan/CdSe-ZnS core-shell quantum dots multilayer films. Journal of Physical Chemistry B, 110, 1566–1570. DOI: 10.1021/jp055916c. http://dx.doi.org/10.1021/jp055916c10.1021/jp055916cSuche in Google Scholar PubMed

[33] Wu, X. G., Liu, H. J., Liu, J. Q., Haley, K. N., Treadway, J. A., Larson, J. P., Ge, N. F., Peale, F., & Bruchez, M. P. (2002). Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nature Biotechnology, 21, 41–46. DOI: 10.1038/nbt764. http://dx.doi.org/10.1038/nbt76410.1038/nbt764Suche in Google Scholar PubMed

[34] Wu, Z. Y., Zhao, Y. L., Qiu, F. P., Li, Y. P., Wang, S. W., Yang, B. H., Chen, L., Sun, J. H., & Wang, J. G. (2009a). Forming water-soluble CdSe/ZnS QDs using amphiphilic polymers, stearyl methacrylate/methylacrylate copolymers with different hydrophobic moiety ratios and their optical properties and stability. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 350, 121–129. DOI: 10.1016/j.colsurfa.2009.09.014. http://dx.doi.org/10.1016/j.colsurfa.2009.09.01410.1016/j.colsurfa.2009.09.014Suche in Google Scholar

[35] Wu, Z. Y., Zhao, Y. L., Qiu, F. P., Ii, Y. P., Wang, S. W., Zhang, B., Yang, B. H., Zhang, Y. F., Gao, R. T., & Wang, J. G. (2009b). Synthesis and characterization of water-soluble, stable and highly luminescent itaconic acid/methacrylic acid copolymer-coated CdSe/CdS quantum dots. Journal of Luminescence, 129, 1125–1131. DOI: 10.1016/j.jlumin.2009.05.014. http://dx.doi.org/10.1016/j.jlumin.2009.05.01410.1016/j.jlumin.2009.05.014Suche in Google Scholar

[36] Xie, X., Zhang, X., Zhang, H., Chen, D., & Fei, W. Y. (2004). Preparation and application of surface-coated superparamagnetic nanobeads in the isolation of genomic DNA. Journal of Magnetism and Magnetic Materials, 277, 16–23. DOI: 10.1016/j.jmmm.2003.09.054. http://dx.doi.org/10.1016/j.jmmm.2003.09.05410.1016/j.jmmm.2003.09.054Suche in Google Scholar

[37] Xu, Z. C., Shen, C. M., Hou, Y. L., Gao, H. J., & Sun, S. H. (2009). Oleylamine as both reducing agent and stabilizer in a facile synthesis of magnetite nanoparticles. Chemistry of Materials, 21, 1778–1780. DOI: 10.1021/cm802978z. http://dx.doi.org/10.1021/cm802978z10.1021/cm802978zSuche in Google Scholar

[38] Yao, Z., Zhang, C., Ping, Q., & Yu, L. (2007). A series of novel chitosan derivatives: Synthesis, characterization and micellar solubilization of paclitaxel. Carbohydrate Polymers, 68, 781–792. DOI: 10.1016/j.carbpol.2006.08.023. http://dx.doi.org/10.1016/j.carbpol.2006.08.02310.1016/j.carbpol.2006.08.023Suche in Google Scholar

[39] Yoshioka, H., Nonaka, K. I., Fukuda, K., & Kazama, S. (1995). Chitosan-derived polymer-surfactants and their micellar properties. Bioscience, Biotechnology, and Biochemistry, 59, 1901–1904. DOI: 10.1271/bbb.59.1901. http://dx.doi.org/10.1271/bbb.59.190110.1271/bbb.59.1901Suche in Google Scholar

[40] Zhang, C., Ping, Q., Zhang, H. J., & Shen, J. (2003). Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohydrate Polymers, 54, 137–141. DOI: 10.1016/s0144-8617(03)00090-0. http://dx.doi.org/10.1016/S0144-8617(03)00090-010.1016/S0144-8617(03)00090-0Suche in Google Scholar

[41] Zhang, C., Qineng, P., & Zhang, H. J. (2004). Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids and Surfaces B: Biointerfaces, 39, 69–75. DOI: 10.1016/j.colsurfb.2004.09.002. http://dx.doi.org/10.1016/j.colsurfb.2004.09.00210.1016/j.colsurfb.2004.09.002Suche in Google Scholar PubMed

[42] Zhao, Y. L., Li, Y. P., Song, Y. T., Jiang, W., Wu, Z. Y., Wang, Y. A., Sun, J. H., & Wang, J. Y. (2009). Architecture of stable and water-soluble CdSe/ZnS core-shell dendron nanocrystals via ligand exchange. Journal of Colloid and Interface Science, 339, 336–343. DOI: 10.1016/j.jcis.2009.08.009. http://dx.doi.org/10.1016/j.jcis.2009.08.00910.1016/j.jcis.2009.08.009Suche in Google Scholar PubMed

[43] Zhao, Y. L., Liu, S., Li, Y. P., Jiang, W., Chang, Y. L., Pan, S., Fang, X. X., Wang, Y. A., & Wang, J. Y. (2010). Synthesis and grafting of folate-PEG-PAMAM conjugates onto quantum dots for selective targeting of folate-receptor-positive tumor cells. Journal of Colloid and Interface Science, 350, 44–50. DOI: 10.1016/j.jcis.2010.05.035. http://dx.doi.org/10.1016/j.jcis.2010.05.03510.1016/j.jcis.2010.05.035Suche in Google Scholar PubMed

Published Online: 2013-6-28
Published in Print: 2013-11-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0401-1/html
Button zum nach oben scrollen