Startseite Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Comparative study of particle size analysis of hydroxyapatite-based nanomaterials

  • Réka Barabás EMAIL logo , Melinda Czikó , Imre Dékány , Liliana Bizo und Erzsébet Bogya
Veröffentlicht/Copyright: 28. Juni 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The purpose of this work was to compare hydroxyapatite (HAP) and composites of HAP, HAP with chitosan (CS), and HAP with poly(vinyl pyrrolidone) (PVP), in terms of their particle size and morphology, using different methods, such as Coulter counter analysis, X-ray diffraction (XRD), and transmission electron microscopy (TEM). Although many researchers have studied HAP and CS/HAP and PVP/HAP composites extensively, there is no evidence of a comparative study of their particle sizes. For this reason, different complementary methods have been used so as to provide a more complete image of final product properties — particle size — from the perspective of possible applications. The syntheses of HAP and HAP with polymer nanoparticles were carried out employing a precipitation method. Variation in particle size with synthesis time and influence of the reactants’ concentration on the materials’ preparation were systematically explored. Crystallite size calculated from XRD data revealed nanosized particles of HAP, CS/HAP, and PVP/HAP materials in the range of 2.5–9.2 nm. Coulter counter analysis revealed mean particle sizes of one thousand orders of magnitude larger, confirming that this technique measures agglomerates, not individual particles. In addition, the particles’ morphology and an assessment of their binding mode were completed by TEM measurements.

[1] Alatorre-Meda, M., Taboada, P., Hartl, F., Wagner, T., Freis, M., & Rodríguez, J. R. (2011). The influence of chitosan valence on the complexation and transfection of DNA: The weaker the DNA-chitosan binding the higher the transfection efficiency. Colloids and Surfaces B: Biointerfaces, 82, 54–62. DOI:10.1016/j.colsurfb.2010.08.013. http://dx.doi.org/10.1016/j.colsurfb.2010.08.01310.1016/j.colsurfb.2010.08.013Suche in Google Scholar

[2] Burg, K. J. L., Porter, S., & Kellam, J. F. (2000). Biomaterial developments for bone tissue engineering. Biomaterials, 21, 2347–2359. DOI: 10.1016/s0142-9612(00)00102-2. http://dx.doi.org/10.1016/S0142-9612(00)00102-210.1016/S0142-9612(00)00102-2Suche in Google Scholar

[3] Cai, X., Tong, H., Shen, X. Y., Chen, W. X., Yan, J., & Hu, J. M. (2009). Preparation and characterization of homoge neous chitosan-polylactic acid/hydroxyapatite nanocomposite for bone tissue engineering and evaluation of its mechanical properties. Acta Biomaterialia, 5, 2693–2703. DOI:10.1016/j.actbio.2009.03.005. http://dx.doi.org/10.1016/j.actbio.2009.03.00510.1016/j.actbio.2009.03.005Suche in Google Scholar

[4] Cao, L. Y., Zhang, C. B., & Huang, J. F. (2005). Influence of temperature, [Ca2+], Ca/P ratio and ultrasonic power on the crystallinity and morphology of hydroxyapatite nanoparticles prepared with a novel ultrasonic precipitation method. Materials Letters, 59, 1902–1906. DOI:10.1016/j.matlet.2005.02.007. http://dx.doi.org/10.1016/j.matlet.2005.02.00710.1016/j.matlet.2005.02.007Suche in Google Scholar

[5] Chang, M. C., Ko, C. C., & Douglas, W. H. (2003). Preparation of hydroxyapatite-gelatin nanocomposites. Biomaterials, 24, 2853–2862. DOI: 10.1016/s0142-9612(03)00115-7. http://dx.doi.org/10.1016/S0142-9612(03)00115-710.1016/S0142-9612(03)00115-7Suche in Google Scholar

[6] Chen, F., Wang, Z. C., & Lin, C. J. (2002). Preparation and characterization of nano sized hydroxyapatite particles and hydroxyapatite/chitosan nano-composite for use in biomedical materials. Materials Letters, 57, 858–861. DOI: 10.1016/s0167-577x(02)00885-6. http://dx.doi.org/10.1016/S0167-577X(02)00885-610.1016/S0167-577X(02)00885-6Suche in Google Scholar

[7] Chen, F., Tang, Q. L., Zhu, Y. J., Wang, K. W., Zhang, M. L., Zhai, W. Y., & Chang, J. (2010). Hydroxyapatite nanorods/poly(vinyl pyrolidone) composite nanofibers, arrays and three-dimensional fabrics: Electrospun preparation and transformation to hydroxyapatite nanostructures. Acta Biomaterialia, 6, 3013–3020. DOI:10.1016/j.actbio.2010.02. 015. http://dx.doi.org/10.1016/j.actbio.2010.02.01510.1016/j.actbio.2010.02.015Suche in Google Scholar

[8] Cheng, X. M., Li, Y. B., Zuo, Y., Zhang, L., Li, J. D., & Wang, H. A. (2009). Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration. Materials Science and Engineering: C, 29, 29–35. DOI:10.1016/j.msec.2008.05.008. http://dx.doi.org/10.1016/j.msec.2008.11.01310.1016/j.msec.2008.05.008Suche in Google Scholar

[9] Cullity, B. D. (1978). Elements of X-ray diffraction. Reading, MA, USA: Addison-Wesley. Suche in Google Scholar

[10] Dash, A. K., & Cudworth, G. C. (1998). Therapeutic applications of implantable drug delivery systems. Journal of Pharmacological and Toxicological Methods, 40, 1–12. DOI: 10.1016/s1056-8719(98)00027-6. http://dx.doi.org/10.1016/S1056-8719(98)00027-610.1016/S1056-8719(98)00027-6Suche in Google Scholar

[11] Di Martino, A., Sittinger, M., & Risbud, M. V. (2005). Chitosan: A versatile biopolymer for orthopaedic tissue-engineering. Biomaterials, 26, 5983–5990. DOI: 10.1016/j.biomaterials. 2005.03.016. http://dx.doi.org/10.1016/j.biomaterials.2005.03.01610.1016/j.biomaterials.2005.03.016Suche in Google Scholar PubMed

[12] Ding, S. J. (2007). Biodegradation behavior of chitosan/calcium phosphate composites. Journal of Non-Crystalline Solids, 353, 2367–2373. DOI:10.1016/j.jnoncrysol.2007.04.020. http://dx.doi.org/10.1016/j.jnoncrysol.2007.04.02010.1016/j.jnoncrysol.2007.04.020Suche in Google Scholar

[13] Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41, 3130–3146. DOI: 10.1002/1521-3773(20020902)41:17〈3130::aid-anie3130〉3.0.co;2-1. http://dx.doi.org/10.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-110.1002/1521-3773(20020902)41:17<3130::AID-ANIE3130>3.0.CO;2-1Suche in Google Scholar

[14] Du, X. W., Chu, Y., Xig, S. X., & Dong, L. H. (2009). Hydrothermal synthesis of calcium hydroxyapatite nanorods in the presence of PVP. Journal of Materials Science, 44, 6273–6279. DOI: 10.1007/s10853-009-3860-6. http://dx.doi.org/10.1007/s10853-009-3860-610.1007/s10853-009-3860-6Suche in Google Scholar

[15] Fábián, R., Kotsis, I., & Piltér, Z. (1999). Comparison of properties of fluorapatites prepared by solid state reaction and precipitation. Hungarian Journal of Industrial Chemistry, 27, 259–263. Suche in Google Scholar

[16] Frake, P., Greenhalgh, D., Grierson, S. M., Hempenstall, J. M., & Rudd, D. R. (1997). Process control and end-point determination of a fluid bed granulation by application of near infra-red spectroscopy. International Journal of Pharmaceutics, 151, 75–80. DOI: 10.1016/s0378-5173(97)04894-1. http://dx.doi.org/10.1016/S0378-5173(97)04894-110.1016/S0378-5173(97)04894-1Suche in Google Scholar

[17] Francis Suh, J. K., & Matthew, H. W. T. (2000). Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 21, 2589–2598. DOI: 10.1016/s0142-9612(00)00126-5. http://dx.doi.org/10.1016/S0142-9612(00)00126-510.1016/S0142-9612(00)00126-5Suche in Google Scholar

[18] Gibson, I. R., Best, S. M., & Bonfield, W. (2002). Effect of silicon substitution on the sintering and microstructure of hydroxyapatite. Journal of the American Ceramic Society, 85, 2771–2777. DOI: 10.1111/j.1151-2916.2002.tb00527.x. http://dx.doi.org/10.1111/j.1151-2916.2002.tb00527.x10.1111/j.1151-2916.2002.tb00527.xSuche in Google Scholar

[19] Halstensen, M., de Bakker, P., & Esbensen, K. H. (2006). Acoustic chemometric monitoring of an industrial granulation production process—a PAT feasibility study. Chemometrics and Intelligent Laboratory Systems, 84, 88–97. DOI:10.1016/j.chemolab.2006.05.012. http://dx.doi.org/10.1016/j.chemolab.2006.05.01210.1016/j.chemolab.2006.05.012Suche in Google Scholar

[20] Harker, J. H., Backhurst, J. R., Richardson, J. F., & Coulson, J. M. (1991). Chemical engineering, Volume 2: Particle Technology and Separation Processes (4th ed.). Oxford, UK: Butterworth-Heinemann. Suche in Google Scholar

[21] Hench, L. L., & Wilson, J. (1993). An introduction to bioceramics. Singapore, Singapore: World Scientific Publishing. http://dx.doi.org/10.1142/202810.1142/2028Suche in Google Scholar

[22] Hench, L. L. (1998). Bioceramics. Journal of the American Ceramic Society, 81, 1705–1728. DOI: 10.1111/j.1151-2916.1998.tb02540.x. http://dx.doi.org/10.1111/j.1151-2916.1998.tb02540.x10.1111/j.1151-2916.1998.tb02540.xSuche in Google Scholar

[23] Hu, Q. L., Li, B. Q., Wang, M., & Shen, J. C. (2004). Preparation and characterization of biodegradable chitosan/hydroxyapatite nanocomposite rods via in situ hybridization: a potential material as internal fixation of bone fracture. Biomaterials, 25, 779–785. DOI: 10.1016/s0142-9612(03)00582-9. http://dx.doi.org/10.1016/S0142-9612(03)00582-910.1016/S0142-9612(03)00582-9Suche in Google Scholar

[24] Hu, X. H., Cunningham, J. C., & Winstead, D. (2008). Study growth kinetics in fluidized bed granulation with at-line FBRM. International Journal of Pharmaceutics, 347, 54–61. DOI:10.1016/j.ijpharm.2007.06.043. http://dx.doi.org/10.1016/j.ijpharm.2007.06.04310.1016/j.ijpharm.2007.06.043Suche in Google Scholar

[25] Iafisco, M., Varoni, E., Battistella, E., Pietronave, S., Prat, M., Roveri, N., & Rimondini, L. (2010). The cooperative effect of size and crystallinity degree on the resorption of biomimetic hydroxyapatite for soft tissue augmentation. The International Journal of Artificial Organs, 33, 765–774. 10.1177/039139881003301101Suche in Google Scholar

[26] Kandori, K., Fudo, A., & Ishikawa, T. (2000). Adsorption of myoglobin onto various synthetic hydroxyapatite particles. Physical Chemistry Chemical Physics, 2, 2015–2020. DOI: 10.1039/a909396f. http://dx.doi.org/10.1039/a909396f10.1039/a909396fSuche in Google Scholar

[27] Khor, E., & Lim, L. Y. (2003). Implantable applications of chitin and chitosan. Biomaterials, 24, 2339–2349. DOI: 10.1016/s0142-9612(03)00026-7. http://dx.doi.org/10.1016/S0142-9612(03)00026-710.1016/S0142-9612(03)00026-7Suche in Google Scholar

[28] Klug, H. P., & Alexander, L. E. (1959). X-ray diffraction procedures. New York, NY, USA: Wiley. Suche in Google Scholar

[29] Kong, L. J., Gao, Y., Cao, W. L., Gong, Y. D., Zhao, N. M., & Zhang, X. F. (2005). Preparation and characterization of nano-hydroxyapatite/chitosan composite scaffolds. Journal of Biomedical Materials Research Part A, 75A, 275–282. DOI: 10.1002/jbm.a.30414. http://dx.doi.org/10.1002/jbm.a.3041410.1002/jbm.a.30414Suche in Google Scholar PubMed

[30] Li, J. J., Chen, Y. P., Yin, Y. J., Yao, F. L., & Yao, K. D. (2007). Modulation of nano-hydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials, 28, 781–790. DOI:10.1016/j.biomaterials.2006.09.042. http://dx.doi.org/10.1016/j.biomaterials.2006.09.04210.1016/j.biomaterials.2006.09.042Suche in Google Scholar PubMed

[31] Manjubala, I., Ponomarev, I., Wilke, I., & Jandt, K. D. (2008). Growth of osteoblast like cells on biomimetic apatitecoated chitosan scaffolds. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 84B, 7–16. DOI: 10.1002/jbm.b.30838. http://dx.doi.org/10.1002/jbm.b.3083810.1002/jbm.b.30838Suche in Google Scholar PubMed

[32] Merkus, H. G. (2009). Particle size measurements: fundamentals, practice, quality. New York, NY, USA: Springer. Suche in Google Scholar

[33] Murugan, R., & Ramakrishna, S. (2005). Crystallographic study of hydroxyapatite bioceramics derived from various sources. Crystal Growth & Design, 5, 111–112. DOI: 10.1021/cg034227s. http://dx.doi.org/10.1021/cg034227s10.1021/cg034227sSuche in Google Scholar

[34] Nettles, D. L., Elder, S. H., & Gilbert, J. A. (2002). Potential use of chitosan as a cell scaffold material for cartilage tissue engineering. Tissue Engineering, 8, 1009–1016. DOI:10.1089/107632702320934100. http://dx.doi.org/10.1089/10763270232093410010.1089/107632702320934100Suche in Google Scholar PubMed

[35] Oliveira, J. M., Rodrigues, M. T., Silva, S. S., Malafaya, P. B., Gomes, M. E., Viegas, C. A., Dias, I. R., Azevedo, J. T., Mano, J. F., & Reis, R. L. (2006). Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissueengineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Bioma terials, 27, 6123–6137. DOI:10.1016/j.biomaterials.2006.07.034. http://dx.doi.org/10.1016/j.biomaterials.2006.07.03410.1016/j.biomaterials.2006.07.034Suche in Google Scholar PubMed

[36] Palazzo, B., Sidoti, M. C., Roveri, N., Tampieri, A., Sandri, M., Bertolazzi, L., Galbusera, F., Dubini, G., Vena, P., & Contro, R. (2005). Controlled drug delivery from porous hydroxyapatite grafts: An experimental and theoretical approach. Materials Science and Engineering: C, 25, 207–213. DOI:10.1016/j.msec.2005.01.011. http://dx.doi.org/10.1016/j.msec.2005.01.01110.1016/j.msec.2005.01.011Suche in Google Scholar

[37] Park, J. H., Saravanakumar, G., Kim, K., & Kwon, I. C. (2010). Targeted delivery of low molecular drugs using chitosan and its derivatives. Advanced Drug Delivery Reviews, 62, 28–41. DOI:10.1016/j.addr.2009.10.003. http://dx.doi.org/10.1016/j.addr.2009.10.00310.1016/j.addr.2009.10.003Suche in Google Scholar

[38] Peter, M., Ganesh, N., Selvamurugan, N., Nair, S. V., Furuike, T., Tamura, H., & Jayakumar, R. (2010). Preparation and characterization of chitosan-gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications. Carbohydrate Polymers, 80, 687–694. DOI: 10.1016/j.carbpol.2009.11.050. http://dx.doi.org/10.1016/j.carbpol.2009.11.05010.1016/j.carbpol.2009.11.050Suche in Google Scholar

[39] Qiu, C. F., Xiao, X. F., Liu, R. F., & She, H. D. (2008). Biomimetic synthesis of spherical nano-hydroxyapatite with polyvinylpyrrolidone as template. Materials Science and Technology, 24, 612–617. DOI: 10.1179/174328407x176974. http://dx.doi.org/10.1179/174328407X17697410.1179/174328407X176974Suche in Google Scholar

[40] Queiroz, A. C., Santos, J. D., Monteiro, F. J., Gibson, I. R., & Knowles, J. C. (2001). Adsorption and release studies of sodium ampicillin from hydroxyapatite and glass-reinforced hydroxyapatite composites. Biomaterials, 22, 1393–1400. DOI: 10.1016/s0142-9612(00)00296-9. http://dx.doi.org/10.1016/S0142-9612(00)00296-910.1016/S0142-9612(00)00296-9Suche in Google Scholar

[41] Ragetly, G., Griffon, D. J., & Chung, Y. S. (2010). The effect of type II collagen coating of chitosan fibrous scaffolds on mesenchymal stem cell adhesion and chondrogenesis. Acta Biomaterialia, 6, 3988–3997. DOI:10.1016/j.actbio.2010.05.016. http://dx.doi.org/10.1016/j.actbio.2010.05.01610.1016/j.actbio.2010.05.016Suche in Google Scholar PubMed

[42] Rusu, V. M., Ng, C. H., Wilke, M., Tiersch, B., Fratzl, P., & Peter, M. G. (2005). Size-controlled hydroxyapatite nanoparticles as self-organized organic-inorganic composite materials. Biomaterials, 26, 5414–5426. DOI: 10.1016/j.biomaterials.2005.01.051. http://dx.doi.org/10.1016/j.biomaterials.2005.01.05110.1016/j.biomaterials.2005.01.051Suche in Google Scholar PubMed

[43] Şentürk, S. B., Kahraman, D., Alkan, C., & Gokçe, İ. (2011). Biodegradable PEG/cellulose PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage. Carbohydrate Polymers, 84, 141–144. DOI:10.1016/j.carbpol.2010.11.015. http://dx.doi.org/10.1016/j.carbpol.2010.11.01510.1016/j.carbpol.2010.11.015Suche in Google Scholar

[44] Suchanek, W., & Yoshimura, M. (1998). Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants. Journal of Materials Research, 13, 94–117. DOI:10.1557/jmr.1998.0015. http://dx.doi.org/10.1557/JMR.1998.001510.1557/JMR.1998.0015Suche in Google Scholar

[45] Teng, S. H., Lee, E. J., Yoon, B. H., Shin, D. S., Kim, H. E., & Oh, J. S. (2009). Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration. Journal of Biomedical Materials Research: Part A, 88A, 569–580. DOI:10.1002/jbm.a.31897. http://dx.doi.org/10.1002/jbm.a.3189710.1002/jbm.a.31897Suche in Google Scholar PubMed

[46] Thein-Han, W. W., & Misra, R. D. K. (2009). Biomimetic chitosan-nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomaterialia, 5, 1182–1197. DOI:10.1016/j.actbio.2008.11.025. http://dx.doi.org/10.1016/j.actbio.2008.11.02510.1016/j.actbio.2008.11.025Suche in Google Scholar

[47] Tonegawa, T., Ikoma, T., Yoshioka, T., Chen, G. P., Hanagata, N., & Tanaka, J. (2008). Characterization and protein adsorption ability of zinc, iron and magnesium hydroxyapatite. Key Engineering Materials, 361–363, 187–190. DOI: 10.4028/www.scientific.net/kem.361-363.187. http://dx.doi.org/10.4028/www.scientific.net/KEM.361-363.18710.4028/www.scientific.net/KEM.361-363.187Suche in Google Scholar

[48] Washington, C. (1992). Particle size analysis in pharmaceutics and other industries: Theory and practice. Chichester, UK: Ellis Horwood. Suche in Google Scholar

[49] Yamaguchi, I., Tokuchi, K., Fukuzaki, H., Koyama, Y., Takakuda, K., Monma, H., & Tanaka, J. (2001). Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of Biomedical Materials Research: Part A, 55, 20–27. DOI: 10.1002/1097-4636(200104)55:1〈20::aidjbm30〉3.0.co;2-f. http://dx.doi.org/10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-FSuche in Google Scholar

[50] Yang, Q., Wang, J. X., Guo, F., & Chen, J. F. (2010). Preparation of hydroxyapatite nanoparticles by using high-gravity reactive precipitation combined with hydrothermal method. Industrial & Engineering Chemistry Research, 49, 9857–9863. DOI: 10.1021/ie1012757. http://dx.doi.org/10.1021/ie101275710.1021/ie1012757Suche in Google Scholar

[51] Zhang, Y. Z., Venugopal, J. R., El-Turki, A., Ramakrishna, S., Su, B., & Lim, C. T. (2008). Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering. Biomaterials, 29, 4314–4322. DOI:10.1016/j.biomaterials.2008.07.038. http://dx.doi.org/10.1016/j.biomaterials.2008.07.03810.1016/j.biomaterials.2008.07.038Suche in Google Scholar

Published Online: 2013-6-28
Published in Print: 2013-11-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0409-6/html
Button zum nach oben scrollen