Abstract
A series of coumarins was synthesised via the silica tungstic acid-catalysed Pechmann reaction; some of these were employed for known three-component reactions with aromatic aldehydes and malononitrile in the presence of sodium hydrogen phosphate (Na2HPO4) as a basic catalyst, affording a variety of potentially anti-HIV active khellactone analogues.
[1] Ballini, R., Bosica, G., & Livi, D. (2001). A new synthesis of exo-methylene butyrolactones from nitroalkanes. Synthesis, 2001, 1519–1522. DOI: 10.1055/s-2001-16098. http://dx.doi.org/10.1055/s-2001-1609810.1055/s-2001-16098Suche in Google Scholar
[2] Da Silva, B. H. S. T., Martins, L. M., & Da Silva-Filho, L. C. (2012). Niobium pentachloride catalyzed multicomponent Povarov reaction. Synlett, 23, 1973–1977. DOI: 10.1055/s-0032-1316587. http://dx.doi.org/10.1055/s-0031-129060010.1055/s-0032-1316587Suche in Google Scholar
[3] El-Agrody, A. M., Abd El-Latif, M. S., El-Hadi, N. A., Fakery, A. H., & Bedair, A. H. (2001). Heteroaromatization with 4-hydroxycoumarin. Part II: Synthesis of some new pyrano [2,3-d]pyrimidines, [1,2,4]triazolo[1,5-c]pyrimidines and pyrimido [1,6-b]-[1,2,4]triazine derivatives. Molecules, 6, 519–527. DOI: 10.3390/60600519. http://dx.doi.org/10.3390/6060051910.3390/60600519Suche in Google Scholar
[4] Gladkov, E., Sirko, S., Khanetskii, B., Lukinova, E., & Desenko, S. (2007). Multicomponent facile synthesis of novel dihydroazolopyrimidinyl carbamides. Chemical Papers, 61, 146–149. DOI: 10.2478/s11696-007-0012-9. http://dx.doi.org/10.2478/s11696-007-0012-910.2478/s11696-007-0012-9Suche in Google Scholar
[5] Gutiérrez-Sánchez, C., Calvino-Casilda, V., Pérez-Mayoral, E., Martín-Aranda, R.M., López-Peinado, A. J., Bejblová, M., & Čejka, J. (2009). Coumarins preparation by Pechmann reaction under ultrasound irradiation. Synthesis of hymecromone as insecticide intermediate. Catalysis Letters, 128, 318–322. DOI: 10.1007/s10562-008-9709-9. 10.1007/s10562-008-9709-9Suche in Google Scholar
[6] Huang, L., Kashiwada, Y., Cosentino, L. M., Fan, S., & Lee, K. H. (1994). 3′,4′-Di-O-(-)-camphanoyl-(+)-cis-khellactone and related compounds: A new class of potent anti-HIV agents. Bioorganic & Medicinal Chemistry Letters, 4, 593–598. DOI: 10.1016/s0960-894x(01)80161-x. http://dx.doi.org/10.1016/S0960-894X(01)80161-X10.1016/S0960-894X(01)80161-XSuche in Google Scholar
[7] Junistia, L., Sugih, A. K., Manurung, R., Picchioni, F., Janssen, L. P. B. M., & Heeres, H. J. (2008). Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch/Stärke, 60, 667–675. DOI: 10.1002/star.200800025. http://dx.doi.org/10.1002/star.20080002510.1002/star.200800025Suche in Google Scholar
[8] Karami, B., & Kiani, M. (2011). ZrOCl2·8H2O/SiO2: An efficient and recyclable catalyst for the preparation of coumarin derivatives by Pechmann condensation reaction. Catalysis Communications, 14, 62–67. DOI: 10.1016/j.catcom.2011.07.002. http://dx.doi.org/10.1016/j.catcom.2011.07.00210.1016/j.catcom.2011.07.002Suche in Google Scholar
[9] Karami, B., Khodabakhshi, S., & Nikrooz, M. (2011). Synthesis of aza-polycyclic compounds: Novel phenazines and quinoxalines using molybdate sulfuric acid (MSA). Polycyclic Aromatic Compdounds, 31, 97–109. DOI: 10.1080/10406638.2011.572577. http://dx.doi.org/10.1080/10406638.2011.57257710.1080/10406638.2011.572577Suche in Google Scholar
[10] Karami, B., Khodabakhshi, S., & Eskandari, K. (2012a). A one-pot, three-component synthesis of new pyrano[2,3-h]coumarin derivatives. Tetrahedron Letters, 53, 1445–1446. DOI: 10.1016/j.tetlet.2012.01.024. http://dx.doi.org/10.1016/j.tetlet.2012.01.02410.1016/j.tetlet.2012.01.024Suche in Google Scholar
[11] Karami, B., Ghashghaee, V., & Khodabakhshi, S. (2012b). Novel silica tungstic acid (STA): Preparation, characterization and its first catalytic application in synthesis of new benzimidazoles. Catalysis Communications, 20, 71–75. DOI: 10.1016/j.catcom.2012.01.012. http://dx.doi.org/10.1016/j.catcom.2012.01.01210.1016/j.catcom.2012.01.012Suche in Google Scholar
[12] Karami, B., Khodabakhshi, S., & Haghighijou, Z. (2012c). Tungstate sulfuric acid: preparation, characterization, and application in catalytic synthesis of novel benzimidazoles. Chemical Papers, 66, 684–690. DOI: 10.2478/s11696-012-0152-4. http://dx.doi.org/10.2478/s11696-012-0152-410.2478/s11696-012-0152-4Suche in Google Scholar
[13] Karami, B., Hoseini, S. J., Eskandari, K., Ghasemi, A., & Nasrabadi, H. (2012d). Synthesis of xanthene derivatives by employing Fe3O4 nanoparticles as an effective and magnetically recoverable catalyst in water. Catalysis Science & Technology, 2, 331–338. DOI: 10.1039/c1cy00289a. http://dx.doi.org/10.1039/c1cy00289a10.1039/C1CY00289ASuche in Google Scholar
[14] Kumar, V., Tomar, S., Patel, R., Yousaf, A., Parmar, V. S., & Malhotra, S. V. (2008). FeCl3-catalyzed Pechmann synthesis of coumarins in ionic liquids. Synthetic Communications, 38, 2646–2654. DOI: 10.1080/00397910802219569. http://dx.doi.org/10.1080/0039791080221956910.1080/00397910802219569Suche in Google Scholar
[15] Mehrabi, H., & Abusaidi, H. (2010). Synthesis of biscoumarin and 3,4-dihydropyrano[c]chromene derivatives catalysed by sodium dodecyl sulfate (SDS) in neat water. Journal of the Iranian Chemical Society, 7, 890–894. http://dx.doi.org/10.1007/BF0324608410.1007/BF03246084Suche in Google Scholar
[16] Meng, X. Y., Wang, H. J., Wang, C. P., & Zhang, Z. H. (2011). Disodium hydrogen phosphate as an efficient and cheap catalyst for the synthesis of 2-aminochromenes. Synthetic Communications, 41, 3477–3484. DOI: 10.1080/00397911.2010.518299. http://dx.doi.org/10.1080/00397911.2010.51829910.1080/00397911.2010.518299Suche in Google Scholar
[17] Opanasenko, M., Shamzhy, M., & Čejka, J. (2013). Solid acid catalysts for coumarin synthesis by the Pechmann reaction: MOFs versus zeolites. ChemCatChem, 5, 1024–1031. DOI: 10.1002/cctc.201200232. http://dx.doi.org/10.1002/cctc.20120023210.1002/cctc.201200232Suche in Google Scholar
[18] Oyamada, J., Jia, C., Fujiwara, Y., & Kitamura, T. (2002). Direct synthesis of coumarins by Pd(II)-catalyzed reaction of alkoxyphenols and alkynoates. Chemistry Letters, 31, 380–381. DOI: 10.1246/cl.2002.380. http://dx.doi.org/10.1246/cl.2002.38010.1246/cl.2002.380Suche in Google Scholar
[19] Sanki, A. K., Bhattacharya, R., Atta, A. K., Suresh, C. G., & Pathak, T. (2008). Diastereoselective addition of planar Nheterocycles to vinyl sulfone-modified carbohydrates: a new route to isonucleosides. Tetrahedron, 64, 10406–10416. DOI: 10.1016/j.tet.2008.08.050. http://dx.doi.org/10.1016/j.tet.2008.08.05010.1016/j.tet.2008.08.050Suche in Google Scholar
[20] Shaabani, A., & Maleki, A. (2007). Three-component, onepot synthesis of 3,4-dihydropyrimidin-2-(1H)-ones catalyzed by bromodimethylsulfonium bromide. Chemical Papers, 61, 333–336. DOI: 10.2478/s11696-007-0043-2. http://dx.doi.org/10.2478/s11696-007-0043-210.2478/s11696-007-0043-2Suche in Google Scholar
[21] Sheng, S. R., Huang, P. G., Wang, Q., Huang, R., & Liu, X. L. (2006). Novel traceless liquid-phase synthesis of coumarin derivatives on poly(ethylene glycol) support. Synthetic Communications, 36, 3175–3181. DOI: 10.1080/00397910600908868. http://dx.doi.org/10.1080/0039791060090886810.1080/00397910600908868Suche in Google Scholar
[22] Szakonyi, Z., Sillanpää, R., & Fülöp, F. (2010). Synthesis of conformationally constrained tricyclic β-lactam enantiomers through Ugi four-center three-component reactions of a monoterpene-based β-amino acid. Molecular Diversity, 14, 59–65. DOI: 10.1007/s11030-009-9143-y. http://dx.doi.org/10.1007/s11030-009-9143-y10.1007/s11030-009-9143-ySuche in Google Scholar PubMed
[23] von Pechmann, H. (1884). Neue Bildungsweise der Cumarine. Synthese des Daphnetins. Berichte der Deutschen Chemischen Gesellschaft, 17, 929–936. DOI: 10.1002/cber.188401701248. http://dx.doi.org/10.1002/cber.18840170124810.1002/cber.188401701248Suche in Google Scholar
[24] Wu, J., Diao, T., Sun, W., & Li, Y. (2006). Expeditious approach to coumarins via Pechmann reaction catalyzed by molecular iodine or AgOTf. Synthetic Communications, 36, 2949–2956. DOI: 10.1080/00397910600773692. http://dx.doi.org/10.1080/0039791060077369210.1080/00397910600773692Suche in Google Scholar
[25] Xie, L., Takeuchi, Y., Cosentino, L. M., & Lee, K. H. (1999). Anti-AIDS agents. 37. Synthesis and structure-activity relationships of (3′R,4′R)-(+)-cis-khellactone derivatives as novel potent anti-HIV agents. Journal of Medicinal Chemistry, 42, 2662–2672. DOI: 10.1021/jm9900624. http://dx.doi.org/10.1021/jm990062410.1021/jm9900624Suche in Google Scholar PubMed
[26] Yavari, I., & Beheshti, S. (2011). ZnO nanoparticles catalyzed efficient one-pot three-component synthesis of 2,3-disubstituted quinalolin-4(1H)-ones under solvent-free conditions. Journal of the Iranian Chemical Society, 8, 1030–1035. http://dx.doi.org/10.1007/BF0324655910.1007/BF03246559Suche in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate
Artikel in diesem Heft
- A comparative study on direct production of ethyl levulinate from glucose in ethanol media catalysed by different acid catalysts
- Model-based sensitivity analysis of a fluidised-bed bioreactor for mercury uptake by immobilised Pseudomonas putida cells
- Variability of total and mobile element contents in ash derived from biomass combustion
- Pigmentary properties of rutile TiO2 modified with cerium, phosphorus, potassium, and aluminium
- Efficient synthesis of carbon nanotubes with improved surface area by low-temperature solvothermal route from dichlorobenzene
- Surface modification of quantum dots and magnetic nanoparticles with PEG-conjugated chitosan derivatives for biological applications
- Comparative study of particle size analysis of hydroxyapatite-based nanomaterials
- Synthesis of cinnamic acid-derived 4,5-dihydrooxazoles
- Thermodynamic properties of dimethyl phthalate + vinyl acetate, diethyl phthalate + vinyl acetate or bromocyclohexane, and dibutyl phthalate + vinyl acetate or 1,2-dichlorobenzene at T = 298.15–308.15 K
- Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug
- DFT study of free radical scavenging activity of erodiol
- QSAR study of amidino bis-benzimidazole derivatives as potent anti-malarial agents against Plasmodium falciparum
- Alternative two-step route to khellactone analogues using silica tungstic acid and sodium hydrogen phosphate