Startseite Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane

  • Pezhman Kazemi EMAIL logo , Mohammad Peydayesh , Alireza Bandegi , Toraj Mohammadi und Omid Bakhtiari
Veröffentlicht/Copyright: 12. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An experimental study on the pertraction of methylene blue (MB) through a supported liquid membrane (SLM) using a mixture of mono-(2-etylhexyl) ester of phosphoric acid (M2EHPA) and bis-(2-etylhexyl) ester of phosphoric acid (D2EHPA) and sesame oil as the liquid membrane (LM) was performed. Parameters affecting the pertraction of MB such as initial MB concentration, carrier concentration, feed phase pH, and stripping phase concentration were analyzed. Optimal experimental conditions for MB pertraction (permeability of 5.63 × 10−6) were obtained after a 7 h separation with the MB concentration in the feed phase of 80 mg L−1, D2EHPA/M2EHPA concentration in membrane phase of 40 vol. %, feed pH of 6, and acetic acid concentration in the stripping phase of 0.4 mol L−1. Kinetics of transport and stability of the SLM system were also studied and the mass transfer coefficient for this system was evaluated. Scanning electron microscopy (SEM) was used to morphologically characterize the membrane surface.

[1] Alinsafi, A., Khemis, M., Pons, M. N., Leclerc, J. P., Yaacoubi, A., Benhammou, A., & Nejmeddine, A. (2005). Electrocoagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing: Process Intensification, 44, 461–470. DOI: 10.1016/j.cep.2004.06.010. 10.1016/j.cep.2004.06.010Suche in Google Scholar

[2] Beydilli, M. I., Pavlostathis, S. G., & Tincher, W. C. (2000). Biological decolorization of the azo dye Reactive Red 2 under various oxidation-reduction conditions. Water Environment Research, 72, 698–705. DOI: 10.2175/106143000x138319. http://dx.doi.org/10.2175/106143000X13831910.2175/106143000X138319Suche in Google Scholar

[3] Capar, G., Yetis, U., & Yilmaz, L. (2007). The most effective pre-treatment to nanofiltration for the recovery of print dyeing wastewaters. Desalination, 212, 103–113. DOI: 10.1016/j.desal.2006.09.020. http://dx.doi.org/10.1016/j.desal.2006.09.02010.1016/j.desal.2006.09.020Suche in Google Scholar

[4] Carneiro, P. A., Osugi, M. E., Fugivara, C. S., Boralle, N., Furlan, M., & Zanoni, M. V. B. (2005). Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere, 59, 431–439. DOI: 10.1016/j.chemosphere.2004.10.043. http://dx.doi.org/10.1016/j.chemosphere.2004.10.04310.1016/j.chemosphere.2004.10.043Suche in Google Scholar

[5] Cengiz, S., & Cavas, L. (2008). Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresource Technology, 99, 2357–2363. DOI: 10.1016/j.biortech.2007.05.011. http://dx.doi.org/10.1016/j.biortech.2007.05.01110.1016/j.biortech.2007.05.011Suche in Google Scholar

[6] Chakrabarty, K., Saha, P., & Ghoshal, A. K. (2010). Separation of mercury from its aqueous solution through supported liquid membrane using environmentally benign diluent. Journal of Membrane Science, 350, 395–401. DOI: 10.1016/j.memsci.2010.01.016. http://dx.doi.org/10.1016/j.memsci.2010.01.01610.1016/j.memsci.2010.01.016Suche in Google Scholar

[7] Chakraborty, M., Dobaria, D., & Parikh, P. A. (2010). Performance and stability study of vegetable oil based Supported Liquid Membrane. Indian Journal of Chemical Technology, 17, 126–132. Suche in Google Scholar

[8] Das, C., Rungta, M., Arya, G., DasGupta, S., & De, S. (2008). Removal of dyes and their mixtures from aqueous solution using liquid emulsion membrane. Journal of Hazardous Materials, 159, 365–371. DOI: 10.1016/j.jhazmat.2008.02.027. http://dx.doi.org/10.1016/j.jhazmat.2008.02.02710.1016/j.jhazmat.2008.02.027Suche in Google Scholar

[9] Garza-Tovar, L. L., Torres-Martínez, L. M., Bernal Rodríguez, D., Gómez, R., & del Angel, G. (2006). Photocatalytic degradation of methylene blue on Bi2MNbO7 (M = Al, Fe, In, Sm) sol-gel catalysts. Journal of Molecular Catalysis A: Chemical, 247, 283–290. DOI: 10.1016/j.molcata.2005.11.053. http://dx.doi.org/10.1016/j.molcata.2005.11.05310.1016/j.molcata.2005.11.053Suche in Google Scholar

[10] Ge, J. T., & Qu, J. H. (2003). Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation. Journal of Hazardous Materials, 100, 197–207. DOI: 10.1016/s0304-3894(03)00105-5. http://dx.doi.org/10.1016/S0304-3894(03)00105-510.1016/S0304-3894(03)00105-5Suche in Google Scholar

[11] Gholivand, M. B., & Khorsandipoor, S. (2000). Selective and efficient uphill transport of Cu(II) through bulk liquid membrane using N-ethyl-2-aminocyclopentene-1-dithiocarboxylic acid as carrier. Journal of Membrane Science, 180, 115–120. DOI: 10.1016/s0376-7388(00)00523-8. http://dx.doi.org/10.1016/S0376-7388(00)00523-810.1016/S0376-7388(00)00523-8Suche in Google Scholar

[12] Gupta, V. K., & Suhas (2009). Application of low-cost adsorbents for dye removal — A review. Journal of Environmental Management, 90, 2313–2342. DOI: 10.1016/j.jenvman.2008.11.017. http://dx.doi.org/10.1016/j.jenvman.2008.11.01710.1016/j.jenvman.2008.11.017Suche in Google Scholar

[13] Hajarabeevi, N., Mohammed Bilal, I., Easwaramoorthy, D., & Palanivelu, K. (2009). Facilitated transport of cationic dyes through a supported liquid membrane with D2EHPA as carrier. Desalination, 245, 19–27. DOI: 10.1016/j.desal.2008.06.009. http://dx.doi.org/10.1016/j.desal.2008.06.00910.1016/j.desal.2008.06.009Suche in Google Scholar

[14] He, D. S., Ma, M., & Zhao, Z. H. (2000). Transport of cadmium ions through a liquid membrane containing amine extractants as carriers. Journal of Membrane Science, 169, 53–59. DOI: 10.1016/s0376-7388(99)00328-2. http://dx.doi.org/10.1016/S0376-7388(99)00328-210.1016/S0376-7388(99)00328-2Suche in Google Scholar

[15] Kulkarni, P. S., Mukhopadhyay, S., Bellary, M. P., & Ghosh, S. K. (2002). Studies on membrane stability and recovery of uranium (VI) from aqueous solutions using a liquid emulsion membrane process. Hydrometallurgy, 64, 49–58. DOI: 10.1016/s0304-386x(02)00006-3. http://dx.doi.org/10.1016/S0304-386X(02)00006-310.1016/S0304-386X(02)00006-3Suche in Google Scholar

[16] Lakshmi, S., Renganathan, R., & Fujita, S. (1995). Study on TiO2-mediated photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry, 88, 163–167. DOI: 10.1016/1010-6030(94)04030-6. http://dx.doi.org/10.1016/1010-6030(94)04030-610.1016/1010-6030(94)04030-6Suche in Google Scholar

[17] Lee, S. C. (2000). Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions. Chemical Engineering Journal, 79, 61–67. DOI: 10.1016/s1385-8947(00)00173-x. http://dx.doi.org/10.1016/S1385-8947(00)00173-X10.1016/S1385-8947(00)00173-XSuche in Google Scholar

[18] Lin, S. H., & Lin, C. M. (1993). Treatment of textile waste effluents by ozonation and chemical coagulation. Water Research, 27, 1743–1748. DOI: 10.1016/0043-1354(93)90112-u. http://dx.doi.org/10.1016/0043-1354(93)90112-U10.1016/0043-1354(93)90112-USuche in Google Scholar

[19] Lin, S. H., & Peng, C. F. (1994). Treatment of textile wastewater by electrochemical method. Water Research, 28, 277–282. DOI: 10.1016/0043-1354(94)90264-x. http://dx.doi.org/10.1016/0043-1354(94)90264-X10.1016/0043-1354(94)90264-XSuche in Google Scholar

[20] Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004. http://dx.doi.org/10.1016/j.seppur.2011.07.00410.1016/j.seppur.2011.07.004Suche in Google Scholar

[21] Marták, J., Schlosser, Š., & Blahušiak, M. (2011). Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane. Chemical Papers, 65, 608–619. DOI: 10.2478/s11696-011-0069-3. http://dx.doi.org/10.2478/s11696-011-0069-310.2478/s11696-011-0069-3Suche in Google Scholar

[22] Muthuraman, G., & Palanivelu, K. (2006). Transport of textile dye in vegetable oils based supported liquid membrane. Dyes and Pigments, 70, 99–104. DOI: 10.1016/j.dyepig.2005.05.002. http://dx.doi.org/10.1016/j.dyepig.2005.05.00210.1016/j.dyepig.2005.05.002Suche in Google Scholar

[23] Muthuraman, G., & Teng, T. T. (2009). Use of vegetable oil in supported liquid membrane for the transport of Rhodamine B. Desalination, 249, 1062–1066. DOI: 10.1016/j.desal.2009.05.017. http://dx.doi.org/10.1016/j.desal.2009.05.01710.1016/j.desal.2009.05.017Suche in Google Scholar

[24] Muthuraman, G., Teng, T. T., Leh, C. P., & Norli, I. (2009). Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant. Journal of Hazardous Materials, 163, 363–369. DOI: 10.1016/j.jhazmat.2008.06.122. http://dx.doi.org/10.1016/j.jhazmat.2008.06.12210.1016/j.jhazmat.2008.06.122Suche in Google Scholar

[25] Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226. DOI: 10.1016/s0960-8524(99)00123-6. http://dx.doi.org/10.1016/S0960-8524(99)00123-610.1016/S0960-8524(99)00123-6Suche in Google Scholar

[26] Oberta, A., Wasilewski, J., Świątkowski, M., & Wódzki, R. (2012). AApplication of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system. Chemical Papers, 66, 26–32. DOI: 10.2478/s11696-011-0101-7. http://dx.doi.org/10.2478/s11696-011-0101-710.2478/s11696-011-0101-7Suche in Google Scholar

[27] Panizza, M., Barbucci, A., Ricotti, R., & Cerisola, G. (2007). Electrochemical degradation of methylene blue. Separation and Purification Technology, 54, 382–387. DOI: 10.1016/j.seppur.2006.10.010. http://dx.doi.org/10.1016/j.seppur.2006.10.01010.1016/j.seppur.2006.10.010Suche in Google Scholar

[28] Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P. R., & Subburaam, C. V. (2006). Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 97, 1618–1625. DOI: 10.1016/j.biortech.2005.08.001. http://dx.doi.org/10.1016/j.biortech.2005.08.00110.1016/j.biortech.2005.08.001Suche in Google Scholar

[29] Swatloski, R. P., Holbrey, J. D., & Rogers, R. D. (2003). Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry, 5, 361–363. DOI: 10.1039/b304400a. http://dx.doi.org/10.1039/b304400a10.1039/b304400aSuche in Google Scholar

[30] Szczepański, P., Szczepańska, G., & Wódzki, R. (2012). Bondgraph description and simulation of membrane processes: Permeation in a compartmental membrane system. Chemical Papers, 66, 999–1009. DOI: 10.2478/s11696-012-0204-9 http://dx.doi.org/10.2478/s11696-012-0204-910.2478/s11696-012-0204-9Suche in Google Scholar

[31] Terry, R. E., Li, N. N., & Ho, W. S. (1982). Extraction of phenolic compounds and organic acids by liquid membranes. Journal of Membrane Science, 10, 305–323. DOI: 10.1016/s0376-7388(00)81416-7. http://dx.doi.org/10.1016/S0376-7388(00)81416-710.1016/S0376-7388(00)81416-7Suche in Google Scholar

[32] Thunhorst, K. L., Noble, R. D., & Bowman, C. N. (1997). Transport of ionic species through functionalized poly(vinylbenzyl chloride) membranes. Journal of Membrane Science, 128, 183–193. DOI: 10.1016/s0376-7388(96)00302-x. http://dx.doi.org/10.1016/S0376-7388(96)00302-X10.1016/S0376-7388(96)00302-XSuche in Google Scholar

[33] Van de Voorde, I., Pinoy, L., & De Ketelaere, R. F. (2004). Recovery of nickel ions by supported liquid membrane (SLM) extraction. Journal of Membrane Science, 234, 11–21. DOI: 10.1016/j.memsci.2004.01.002. http://dx.doi.org/10.1016/j.memsci.2004.01.00210.1016/j.memsci.2004.01.002Suche in Google Scholar

[34] van der Zee, F. P., & Villaverde, S. (2005). Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies. Water Research, 39, 1425–1440. DOI: 10.1016/j.watres.2005.03.007. http://dx.doi.org/10.1016/j.watres.2005.03.00710.1016/j.watres.2005.03.007Suche in Google Scholar

[35] Vasanth Kumar, K., & Kumaran, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochemical Engineering Journal, 27, 83–93. DOI: 10.1016/j.bej.2005.08.004. http://dx.doi.org/10.1016/j.bej.2005.08.00410.1016/j.bej.2005.08.004Suche in Google Scholar

[36] Venkateswaran, P., & Palanivelu, K. (2006). Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane. Journal of Hazardous Materials, 131, 146–152. DOI: 10.1016/j.jhazmat.2005.09.025. http://dx.doi.org/10.1016/j.jhazmat.2005.09.02510.1016/j.jhazmat.2005.09.025Suche in Google Scholar

[37] Vijayaraghavan, K., Ramanujam, T. K., & Balasubramanian, N. (2001). In situ hypochlorous acid generation for the treatment of textile wastewater. Coloration Technology, 117, 49–53. DOI: 10.1111/j.1478-4408.2001.tb00335.x. http://dx.doi.org/10.1111/j.1478-4408.2001.tb00335.x10.1111/j.1478-4408.2001.tb00335.xSuche in Google Scholar

[38] Wang, Z. H., Jiang, Y. L., & Fu, J. F. (1996). The entrainment swelling of emulsion during lactic acid extraction by LSMs. Journal of Membrane Science, 109, 25–34. DOI: 10.1016/0376-7388 (95)00156-5. http://dx.doi.org/10.1016/0376-7388(95)00156-510.1016/0376-7388(95)00156-5Suche in Google Scholar

[39] Yahaya, G. O., Brisdon, B. J., & England, R. (2000). Facilitated transport of lactic acid and its ethyl ester by supported liquid membranes containing functionalized polyorganosiloxanes as carriers. Journal of Membrane Science, 168, 187–201. DOI: 10.1016/s0376-7388(99)00312-9. http://dx.doi.org/10.1016/S0376-7388(99)00312-910.1016/S0376-7388(99)00312-9Suche in Google Scholar

[40] Zha, F. F., Fane, A. G., & Fell, C. J. D. (1995). Instability mechanisms of supported liquid membranes in phenol transport process. Journal of Membrane Science, 107, 59–74. DOI: 10.1016/0376-7388(95)00104-k. http://dx.doi.org/10.1016/0376-7388(95)00104-K10.1016/0376-7388(95)00104-KSuche in Google Scholar

[41] Zheng, H. D., Wang, B. Y., Wu, Y. X., & Ren, Q. L. (2009a). Instability mechanisms of supported liquid membranes for copper (II) ion extraction. Colloids and Surface A, 351, 38–45. DOI: 10.1016/j.colsurfa.2009.09.028. http://dx.doi.org/10.1016/j.colsurfa.2009.09.02810.1016/j.colsurfa.2009.09.028Suche in Google Scholar

[42] Zheng, H. D., Wang, B. Y., Wu, Y. X., & Ren, Q. L. (2009b). Instability mechanisms of supported liquid membrane for phenol transport. Chinese Journal of Chemical Engineering, 17, 750–755. DOI: 10.1016/s1004-9541(08)60272-4. http://dx.doi.org/10.1016/S1004-9541(08)60272-410.1016/S1004-9541(08)60272-4Suche in Google Scholar

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0374-0/html
Button zum nach oben scrollen