Startseite Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions

  • Javad Safari EMAIL logo , Zohre Zarnegar und Mahmoud Borujeni
Veröffentlicht/Copyright: 12. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

In this paper, one-pot synthesis of 2,4,6-triarylpyridine by condensation of subsisted acetophenone (II), aromatic aldehydes (I), and ammonium acetate (III) in the presence of nanocrystalline MgAl2O4 as a new heterogeneous catalyst under solvent-free conditions is reported. Advantages of this method are the use of spatially-hindered aldehydes such as 2-methoxy-, 2-fluoro-, and 2-chlorobenzaldehydes, a new nanocatalyst with high surface area, shorter reaction time, easier workup, higher yield, and its environmental friendliness. The performance of this reaction under solvent free conditions using heterogeneous catalysts like MgAl2O4 could enhance its efficiency from an economic as well as green chemistry point of view.

[1] Adib, M., Tahermansouri, H., Koloogani, S. A., Mohammadi, B., & Bijanzadeh, H. R. (2006). Kröhnke pyridines: an efficient solvent-free synthesis of 2,4,6-triarylpyridines. Tetrahedron Letters, 47, 5957–5960. DOI: 10.1016/j.tetlet.2006.01.162. http://dx.doi.org/10.1016/j.tetlet.2006.01.16210.1016/j.tetlet.2006.01.162Suche in Google Scholar

[2] Banerjee, S., & Sereda, G. (2009). One-step, three-component synthesis of highly substituted pyridines using silica nanoparticle as reusable catalyst. Tetrahedron Letters, 50, 6959–6962. DOI: 10.1016/j.tetlet.2009.09.137. http://dx.doi.org/10.1016/j.tetlet.2009.09.13710.1016/j.tetlet.2009.09.137Suche in Google Scholar

[3] Barluenga, J., Jiménez-Aquino, A., Fernández, M. A., Aznar, F., & Valdés, C. (2008). Multicomponent and one-pot synthesis of trisubstituted pyridines through a Pd-catalyzed crosscoupling/ cross-coupling/cycloaddition sequence. Tetrahedron, 64, 778–786. DOI: 10.1016/j.tet.2007.10.112. http://dx.doi.org/10.1016/j.tet.2007.10.11210.1016/j.tet.2007.10.112Suche in Google Scholar

[4] Chiu, C. F., Tang, Z. L., & Ellingboe, J. W. (1998). Solid-phase synthesis of 2,4,6-trisubstituted pyridines. Journal of Combinatorial Chemistry, 1, 73–77. DOI: 10.1021/cc980005g. http://dx.doi.org/10.1021/cc980005g10.1021/cc980005gSuche in Google Scholar

[5] Constable, E. C., Housecroft, C. E., Neuburger, M., Phillips, D., Raithby, P. R., Schofield, E., Sparr, E., Tocher, D. A., Zehnder, M., & Zimmermann, Y. (2000). Development of supramolecular structure through alkylation of pendant pyridyl functionality. Journal of Chemical Society, Dalton Transactions, 13, 2219–2228. DOI: 10.1039/b000940g. http://dx.doi.org/10.1039/b000940g10.1039/b000940gSuche in Google Scholar

[6] Davoodnia, A., Bakavoli, M., Moloudi, R., Tavakoli-Hoseini, N., & Khashi, M. (2010). Highly efficient, one-pot, solvent-free synthesis of 2,4,6-triarylpyridines using a Brønsted-acidic ionic liquid as reusable catalyst. Monatshefte für Chemie — Chemical Monthly, 141, 867–870. DOI: 10.1007/s00706-010-0329-x. http://dx.doi.org/10.1007/s00706-010-0329-x10.1007/s00706-010-0329-xSuche in Google Scholar

[7] Enyedy, I. J., Sakamuri, S., Zaman, W. A., Johnson, K. M., & Wang, S. M. (2003). Pharmacophore-based discovery of substituted pyridines as novel dopamine transporter inhibitors. Bioorganic & Medicinal Chemistry Letters, 13, 513–517. DOI: 10.1016/s0960-894x(02)00943-5. http://dx.doi.org/10.1016/S0960-894X(02)00943-510.1016/S0960-894X(02)00943-5Suche in Google Scholar

[8] Guo, J. J., Lou, H., Zhao, H., Wang, X. G., & Zheng, X. M. (2004). Novel synthesis of high surface area MgAl2O4 spinel as catalyst support. Materials Letters, 58, 1920–1923. DOI: 10.1016/j.matlet.2003.12.013. http://dx.doi.org/10.1016/j.matlet.2003.12.01310.1016/j.matlet.2003.12.013Suche in Google Scholar

[9] Heravi, M. M., Bakhtiari, K., Daroogheha, Z., & Bamoharram, F. F. (2007). An efficient synthesis of 2,4,6-triarylpyridines catalyzed by heteropolyacid under solventfree conditions. Catalysis Communications, 8, 1991–1994. DOI: 10.1016/j.catcom.2007.03.028. http://dx.doi.org/10.1016/j.catcom.2007.03.02810.1016/j.catcom.2007.03.028Suche in Google Scholar

[10] Khosropour, A. R., Mohammadpoor-Baltork, I., & Kiani, F. (2011). Green, new and efficient tandem oxidation and conversion of aryl alcohols to 2,4,6-triarylpyridines promoted by [HMIm]NO3-[BMIm]BF4 as a binary ionic liquid. Comptes Rendus Chimie, 14, 441–445. DOI: 10.1016/j.crci.2010.10.002. http://dx.doi.org/10.1016/j.crci.2010.10.00210.1016/j.crci.2010.10.002Suche in Google Scholar

[11] Kim, B. Y., Ahn, J. B., Lee, H. W., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Hong, C. I., & Yoon, S. S. (2004). Synthesis and biological activity of novel substituted pyridines and purines containing 2,4-thiazolidinedione. European Journal of Medicinal Chemistry, 39, 433–447. DOI: 10.1016/j.ejmech.2004.03.001. http://dx.doi.org/10.1016/j.ejmech.2004.03.00110.1016/j.ejmech.2004.03.001Suche in Google Scholar

[12] Klimešová, V., Svoboda, M., Waisser, K., Pour, M., & Kaustová, J. (1999). New pyridine derivatives as potential antimicrobial agents. Il Farmaco, 54, 666–672. DOI: 10.1016/s0014-827x(99)00078-6. http://dx.doi.org/10.1016/S0014-827X(99)00078-610.1016/S0014-827X(99)00078-6Suche in Google Scholar

[13] Maleki, B., Azarifar, D., Veisi, H., Hojati, S. F., Salehabadi, H., & Nejat Yami, R. (2010). Wet 2,4,6-trichloro-1,3,5-triazine (TCT) as an efficient catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Chinese Chemical Letters, 21, 1346–1349. DOI: 10.1016/j.cclet.2010.06.028. http://dx.doi.org/10.1016/j.cclet.2010.06.02810.1016/j.cclet.2010.06.028Suche in Google Scholar

[14] Montazeri, N., & Mahjoob, S. (2012). Highly efficient and easy synthesis of 2,4,6-triarylpyridines catalyzed by pentafluorophenylammonium triflate (PFPAT) as a new recyclable solid acid catalyst in solvent-free conditions. Chinese Chemical Letters, 23, 419–422. DOI: 10.1016/j.cclet.2012.01.035. http://dx.doi.org/10.1016/j.cclet.2012.01.03510.1016/j.cclet.2012.01.035Suche in Google Scholar

[15] Nagarapu, L., Aneesa, Peddiraju, R., & Apuri, S. (2007). HClO4-SiO2 as a novel and recyclable catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions. Catalysis Communications, 8, 1973–1976. DOI: 10.1016/j.catcom.2007.08.003. http://dx.doi.org/10.1016/j.catcom.2007.08.00310.1016/j.catcom.2007.08.003Suche in Google Scholar

[16] Navaei Alvar, E., Rezaei, M., & Navaei Alvar, H. (2010). Synthesis of mesoporous nanocrystalline MgAl2O4 spinel via surfactant assisted precipitation route. Powder Technology, 198, 275–278. DOI: 10.1016/j.powtec.2009.11.019. http://dx.doi.org/10.1016/j.powtec.2009.11.01910.1016/j.powtec.2009.11.019Suche in Google Scholar

[17] Pillai, A. D., Rathod, P. D., Franklin, P. X., Patel, M., Nivsarkar, M., Vasu, K. K., Padh, H., & Sudarsanam, V. (2003). Novel drug designing approach for dual inhibitors as anti-inflammatory agents: implication of pyridine template. Biochemical and Biophysical Research Communications, 301, 183–186. DOI: 10.1016/s0006-291x(02)02996-0. http://dx.doi.org/10.1016/S0006-291X(02)02996-010.1016/S0006-291X(02)02996-0Suche in Google Scholar

[18] Safari, J., Khalili, S. D., Rezaei, M., Banitaba, S., & Meshkani, F. (2010). Nanocrystalline magnesium oxide: a novel and efficient catalyst for facile synthesis of 2,4,5-trisubstituted imidazole derivatives. Monatshefte für Chemie — Chemical Monthly, 141, 1339–1345. DOI: 10.1007/s00706-010-0397-y. http://dx.doi.org/10.1007/s00706-010-0397-y10.1007/s00706-010-0397-ySuche in Google Scholar

[19] Safari, J., Banitaba, S. H., & Dehghan Khalili, S. (2011). Cobalt nanoparticles promoted highly efficient one pot fourcomponent synthesis of 1,4-dihydropyridines under solventfree conditions. Chinese Journal of Catalysis, 32, 1850–1855. DOI: 10.1016/s1872-2067(10)60295-1. http://dx.doi.org/10.1016/S1872-2067(10)60295-110.1016/S1872-2067(10)60295-1Suche in Google Scholar

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 1.10.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0361-5/html
Button zum nach oben scrollen