Abstract
Rapid and practical green acetylation and tetrahydropyranylation routes of structurally diverse alcohols and phenols were applied under solvent-free reaction conditions providing excellent yields, using catalytic amounts of environmentally friendly sulfonated ordered nanoporous carbon (CMK-5-SO3H). Non-toxic nature of the catalyst, its easy handling, recovery and reusability, and the absence of any solvent characterize the presented procedures as efficient methods. These procedures provide methods for the separation of the product by simple filtration.
[1] Augé, C., Warren, C. D., & Jeanloz, R. W. (1980). The synthesis of O-β-d-mannopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-d-glucopyranose. part II. Carbohydrate Research, 82, 85–95. DOI: 10.1016/s0008-6215(00)85522-6. http://dx.doi.org/10.1016/S0008-6215(00)85522-610.1016/S0008-6215(00)85522-6Search in Google Scholar
[2] Bodanszky, M., & Ondetti, M. A. (1966). Peptide synthesis (chapter 4). London, UK: Wiley-Interscience. Search in Google Scholar
[3] Bongini, A., Cardillo, G., Orena, M., & Sandri, S. (1979). A simple and practical method for tetrahydropyranylation of alcohols and phenols. Synthesis, 1979, 618–620. DOI: 10.1055/s-1979-28784. http://dx.doi.org/10.1055/s-1979-2878410.1055/s-1979-28784Search in Google Scholar
[4] Campelo, J. M., Garcia, A., Lafont, F., Luna, D., & Marinas, J. M. (1994). Spanish sepiolite clay as a new heterogeneous catalyst for the tetrahydropyranylation of alcohols and phenols. Synthetic Communications, 24, 1345–1350. DOI: 10.1080/00397919408011737. http://dx.doi.org/10.1080/0039791940801173710.1080/00397919408011737Search in Google Scholar
[5] Chauhan, K. K., Frost, C. G., Love, I., & Waite, D. (1999). Indium triflate: An efficient catalyst for acylation reactions. Synlett, 1999, 1743–1744. DOI: 10.1055/s-1999-2941. http://dx.doi.org/10.1055/s-1999-294110.1055/s-1999-2941Search in Google Scholar
[6] Corey, E. J., Niwa, H., & Knolle, J. (1978). Total synthesis of (S)-12-hydroxy-5,8,14-cis,-10-trans-eicosatetraenoic acid. Journal of the American Chemical Society, 100, 1942–1943. DOI: 10.1021/ja00474a058. http://dx.doi.org/10.1021/ja00474a05810.1021/ja00474a058Search in Google Scholar
[7] Corma, A. (1995). Inorganic solid acids and their use in acidcatalyzed hydrocarbon reactions. Chemical Reviews, 95, 559–614. DOI: 10.1021/cr00035a006. http://dx.doi.org/10.1021/cr00035a00610.1021/cr00035a006Search in Google Scholar
[8] Das, B., & Thirupathi, P. (2007). A highly selective and efficient acetylation of alcohols and amines with acetic anhydride using NaHSO4·SiO2 as a heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical, 269, 12–16. DOI: 10.1016/j.molcata.2006.12.029. http://dx.doi.org/10.1016/j.molcata.2006.12.02910.1016/j.molcata.2006.12.029Search in Google Scholar
[9] Deka, N., & Sarma, J. C. (2001). Microwave-mediated selective monotetrahydropyranylation of symmetrical diols catalyzed by iodine. The Journal of Organic Chemistry, 66, 1947–1948. DOI: 10.1021/jo000863a. http://dx.doi.org/10.1021/jo000863a10.1021/jo000863aSearch in Google Scholar PubMed
[10] Djerassi, C. (Ed.) (1963). Steroid reactions (pp. 76). San Francisco, CA, USA: Holden-Day. Search in Google Scholar
[11] Firouzabadi, H., Iranpoor, N., Nowrouzi, F., & Amani, K. (2003). Aluminium dodecatungstophosphate (AlPW12O40) as a highly efficient catalyst for the selective acetylation of -OH, -SH and -NH2 functional groups in the absence of solvent at room temperature. Chemical Communications, 2003, 764–765.DOI: 10.1039/b300775h. 10.1039/b300775hSearch in Google Scholar PubMed
[12] Greene, T. W., & Wuts, P. G. M. (1991). Protective groups in organic synthesis (2nd ed.). New York, NY, USA: Wiley. Search in Google Scholar
[13] Hanson, J. R. (1999). Protective groups in organic synthesis. Malden, MA, USA: Blackwell Science. Search in Google Scholar
[14] Heravi, M. M., Ajami, D., & Ghassemzadeh, M. (1999). Solvent free tetrahydropyranylation of alcohols and phenols over sulfuric acid adsorbed on silica gel. Synthetic Communications, 29, 1013–1016. DOI: 10.1080/00397919908086065. http://dx.doi.org/10.1080/0039791990808606510.1080/00397919908086065Search in Google Scholar
[15] Hoyer, S., Laszlo, P., Orlović, M., & Polla, E. (1986). Catalysis by acidic clay of the protective tetrahydropyranylation of alcohols and phenols. Synthesis, 1986, 655–657. DOI: 10.1055/s-1986-31736. http://dx.doi.org/10.1055/s-1986-3173610.1055/s-1986-31736Search in Google Scholar
[16] Ishihara, K., Kubota, M., Kurihara, H., & Yamamoto, H. (1996). Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. The Journal of Organic Chemistry, 61, 4560–4567. DOI: 10.1021/jo952237x. http://dx.doi.org/10.1021/jo952237x10.1021/jo952237xSearch in Google Scholar
[17] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412, 169–172. DOI: 10.1038/35084046. http://dx.doi.org/10.1038/3508404610.1038/35084046Search in Google Scholar
[18] Kamal, A., Khan, M. N. A., Reddy, K. S., Srikanth, Y. V. V., & Krishnaji, T. (2007). Al(OTf)3 as a highly efficient catalyst for the rapid acetylation of alcohols, phenols and thiophenols under solvent-free conditions. Tetrahedron Letters, 48, 3813–3818. DOI: 10.1016/j.tetlet.2007.03.162. http://dx.doi.org/10.1016/j.tetlet.2007.03.16210.1016/j.tetlet.2007.03.162Search in Google Scholar
[19] Karimi, B., & Maleki, J. (2002). Lithium triflate (LiOTf) catalyzed efficient and chemoselective tetrahydropyranylation of alcohols and phenols under mild and neutral reaction conditions. Tetrahedron Letters, 43, 5353–5355. DOI: 10.1016/s0040-4039(02)00892-4. http://dx.doi.org/10.1016/S0040-4039(02)00892-410.1016/S0040-4039(02)00892-4Search in Google Scholar
[20] Karimi, B., & Ma’mani, L. (2003). Scandium trifluoromethanesulfonate as a recyclable catalyst for efficient methoxymethylation of alcohols. Tetrahedron Letters, 44, 6051–6053. DOI: 10.1016/s0040-4039(03)01481-3. http://dx.doi.org/10.1016/S0040-4039(03)01481-310.1016/S0040-4039(03)01481-3Search in Google Scholar
[21] Karimi, B., & Zareyee, D. (2008). Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Organic Letters, 10, 3989–3992. DOI: 10.1021/ol8013107. http://dx.doi.org/10.1021/ol801310710.1021/ol8013107Search in Google Scholar PubMed
[22] Karimi, B., & Zareyee, D. (2009). Solvent-free three component Strecker reaction of ketones using highly recyclable and hydrophobic sulfonic acid based nanoreactors. Journal of Material Chemistry, 19, 8665–8670. DOI: 10.1039/b911388f. http://dx.doi.org/10.1039/b911388f10.1039/b911388fSearch in Google Scholar
[23] Kim, Y. J., & Varma, R. S. (2005). Microwave-assisted preparation of imidazolium-based tetrachloroindate(III) and their application in the tetrahydropyranylation of alcohols. Tetrahedron Letters, 46, 1467–1469. DOI: 10.1016/j.tetlet.2005.01.025. http://dx.doi.org/10.1016/j.tetlet.2005.01.02510.1016/j.tetlet.2005.01.025Search in Google Scholar
[24] Kumar, P., Dinesh, C. U., Reddy, R. S., & Pandey, B. (1993). HY zeolite: a mild and efficient catalyst for the tetrahydropyranylation of alcohols. Synthesis, 1993, 1069–1070. DOI: 10.1055/s-1993-25998. 10.1055/s-1993-25998Search in Google Scholar
[25] Mineno, T. (2002). A fast and practical approach to tetrahydropyranylation and depyranylation of alcohols using indium triflate. Tetrahedron Letters, 43, 7975–7978. DOI: 10.1016/s0040-4039(02)01864-6. http://dx.doi.org/10.1016/S0040-4039(02)01864-610.1016/S0040-4039(02)01864-6Search in Google Scholar
[26] Naik, A., Gopinath, R., & Patel, B. K. (2001). Tetrabutylammonium tribromide (TBATB)-promoted tetrahydropyranylation/depyranylation of alcohols. Tetrahedron Letters, 42, 7679–7681. DOI: 10.1016/s0040-4039(01)01599-4. http://dx.doi.org/10.1016/S0040-4039(01)01599-410.1016/S0040-4039(01)01599-4Search in Google Scholar
[27] Niknam, K., & Saberi, D. (2009). Preparation of sulfuric acid ([3-(3-silicapropyl)sulfanyl]propyl)ester: A new and recyclable catalyst for the formylation and acetylation of alcohols under heterogeneous conditions. Applied Catalysis A: General, 366, 220–225. DOI: 10.1016/j.apcata.2009.07.014. http://dx.doi.org/10.1016/j.apcata.2009.07.01410.1016/j.apcata.2009.07.014Search in Google Scholar
[28] Nishiguchi, T., & Kawamine, K. (1990). Selective monoetherification of 1, n-diols catalysed by aluminium sulphate supported on silica gel. Journal of the Chemical Society, Chemical Communications, 1990, 1766–1767. DOI: 10.1039/c39900001766. http://dx.doi.org/10.1039/c3990000176610.1039/c39900001766Search in Google Scholar
[29] Olah, G. A., Husain, A., & Singh, B. P. (1983). Catalysis by solid superacids; 191. Simplified and improved polymeric perfluorinated resin sulfonic acid (Nafion-H) catalyzed protection-deprotection reactions. Synthesis, 1983, 892–895. DOI: 10.1055/s-1983-30553. Search in Google Scholar
[30] Palaniappan, S., Sai Ram, M., & Amarnath, C. A. (2002). Tetrahydropyranylation of alcohols catalyzed by polyaniline salts. Green Chemistry, 2002, 369–371. DOI: 10.1039/b205860j. http://dx.doi.org/10.1039/b205860j10.1039/b205860jSearch in Google Scholar
[31] Phukan, P. (2004). Iodine as an extremely powerful catalyst for the acetylation of alcohols under solvent-free conditions. Tetrahedron Letters, 45, 4785–4787. DOI: 10.1016/j.tetlet.2004.04.076. http://dx.doi.org/10.1016/j.tetlet.2004.04.07610.1016/j.tetlet.2004.04.076Search in Google Scholar
[32] Rajabi, F. (2009). A heterogeneous cobalt(II) Salen complex as an efficient and reusable catalyst for acetylation of alcohols and phenols. Tetrahedron Letters, 50, 395–397. DOI: 10.1016/j.tetlet.2008.11.024. http://dx.doi.org/10.1016/j.tetlet.2008.11.02410.1016/j.tetlet.2008.11.024Search in Google Scholar
[33] Ranu, B. C., & Saha, M. (1994). A simple, efficient, and selective method for tetrahydropyranylation of alcohols on a solid phase of alumina impregnated with zinc chloride. The Journal of Organic Chemistry, 59, 8269–8270. DOI: 10.1021/jo00105a054. http://dx.doi.org/10.1021/jo00105a05410.1021/jo00105a054Search in Google Scholar
[34] Ravindranath, N., Ramesh, C., & Das, B. (2001). Simple, facile and highly selective tetrahydropyranylation of alcohols using silica chloride. Synlett, 2001, 1777–1778. DOI: 10.1055/s-2001-18078. http://dx.doi.org/10.1055/s-2001-1807810.1055/s-2001-18078Search in Google Scholar
[35] Reddy, B. M., Sreekanth, P. M., & Lakshmanan, P. (2005). Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. Journal of Molecular Catalysis A: Chemical, 237, 93–100. DOI: 10.1016/j.molcata.2005.04.039. http://dx.doi.org/10.1016/j.molcata.2005.04.03910.1016/j.molcata.2005.04.039Search in Google Scholar
[36] Rice, R. J., Pontikos, N. M., & McCreery, R. L. (1990). Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes. Journal of the American Chemical Society, 112, 4617–4622. DOI: 10.1021/ja00168a001. http://dx.doi.org/10.1021/ja00168a00110.1021/ja00168a001Search in Google Scholar
[37] Romanelli, G., Ruiz, D., Vázquez, P., Thomas, H., & Autino, J. C. (2010). Preyssler heteropolyacid H14[NaP5W29MoO110]: A heterogeneous, green and recyclable catalyst used for the protection of functional groups in organic synthesis. Chemical Engineering Journal, 161, 355–362. DOI: 10.1016/j.cej.2009.12.029. http://dx.doi.org/10.1016/j.cej.2009.12.02910.1016/j.cej.2009.12.029Search in Google Scholar
[38] Satam, J. R., & Jayaram, R. V. (2008). Acetylation of alcohols, phenols and amines using ammonium salt of 12-tungstophosphoric acid: Environmentally benign method. Catalysis Communications, 9, 2365–2370. DOI: 10.1016/j.catcom.2008.05.033. http://dx.doi.org/10.1016/j.catcom.2008.05.03310.1016/j.catcom.2008.05.033Search in Google Scholar
[39] Shimizu, K., Hayashi, E., Hatamachi, T., Kodama, T., & Kitamaya, Y. (2004). SO3H-functionalized silica for acetalization of carbonyl compounds with methanol and tetrahydropyranylation of alcohols. Tetrahedron Letters, 45, 5135–5138. DOI: 10.1016/j.tetlet.2004.04.186. http://dx.doi.org/10.1016/j.tetlet.2004.04.18610.1016/j.tetlet.2004.04.186Search in Google Scholar
[40] Shirini, F., Zolfigol, M. A., & Abri, A. R. (2007). Regioselective tetrahydropyranylation of alcohols catalyzed by Fe(HSO4)3. Chinese Chemical Letters, 18, 803–806. DOI: 10.1016/j.cclet.2007.05.050. http://dx.doi.org/10.1016/j.cclet.2007.05.05010.1016/j.cclet.2007.05.050Search in Google Scholar
[41] Stephens, J. R., Butler, P. L., Clow, C. H., Oswald, M. C., Smith, R. C., & Mohan, R. S. (2003). Bismuth triflate: an efficient catalyst for the formation and deprotection of tetrahydropyranyl ethers. European Journal of Organic Chemistry, 2003, 3827–3831. DOI: 10.1002/ejoc.200300295. http://dx.doi.org/10.1002/ejoc.20030029510.1002/ejoc.200300295Search in Google Scholar
[42] Tanemura, K., Horaguchi, T., & Suzuki, T. (1992). 2,3-Dichloro-5,6-dicyano-p-benzoquinone as a mild and efficient catalyst for the tetrahydropyranylation of alcohols. Bulletin of the Chemical Society of Japan, 65, 304–305. DOI: 10.1246/bcsj.65.304. http://dx.doi.org/10.1246/bcsj.65.30410.1246/bcsj.65.304Search in Google Scholar
[43] van Boom, J. H., Burgers, P. M. J., Owen, G. R., Reese, C. B., & Saffhill, R. (1971). Approaches to oligoribonucleotide synthesis via phosphotriester intermediates. Journal of the Chemical Society D, Chemical Communications, 1971, 869–871. DOI: 10.1039/c29710000869. http://dx.doi.org/10.1039/c2971000086910.1039/c29710000869Search in Google Scholar
[44] Wang, Y. G., Wu, X. X., & Jiang, Z. Y. (2004). A mild and efficient selective tetrahydropyranylation of primary alcohols and deprotection of THP ethers of phenols and alcohols using PdCl2(CH3CN)2 as catalyst. Tetrahedron Letters, 45, 2973–2976. DOI: 10.1016/j.tetlet.2004.02.057. http://dx.doi.org/10.1016/j.tetlet.2004.02.05710.1016/j.tetlet.2004.02.057Search in Google Scholar
[45] Wang, X. Q., Liu, R., Waje, M. M., Chen, Z. W., Yan, Y. S., Bozhilov, K. N., & Feng, P. Y. (2007a). Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst. Chemistry of Materials, 19, 2395–2397. DOI: 10.1021/cm070278r. http://dx.doi.org/10.1021/cm070278r10.1021/cm070278rSearch in Google Scholar
[46] Wang, M., Song, Z. G., Gong, H., & Jiang, H. (2007b). Copper methanesulfonate-acetic acid as a novel catalytic system for tetrahydropyranylation of alcohols and phenols. Chinese Chemical Letters, 18, 799–802. DOI: 10.1016/j.cclet.2007.05.001. http://dx.doi.org/10.1016/j.cclet.2007.05.00110.1016/j.cclet.2007.05.001Search in Google Scholar
[47] Williams, D. B. G., Simelane, S. B., Lawton, M., & Kinfe, H. H. (2010). Efficient tetrahydropyranyl and tetrahydrofuranyl protection/deprotection of alcohols and phenols with Al(OTf)3 as catalyst. Tetrahedron, 66, 4573–4576. DOI: 10.1016/j.tet.2010.04.053. http://dx.doi.org/10.1016/j.tet.2010.04.05310.1016/j.tet.2010.04.053Search in Google Scholar
[48] Yadav, J. S., Narsaiah, A. V., Reddy, B. V. S., Basak, A. K., & Nagaiah, K. (2005). Niobium(V) chloride: an efficient catalyst for selective acetylation of alcohols and phenols. Journal of Molecular Catalysis A: Chemical, 230, 107–111. DOI: 10.1016/j.molcata.2004.12.012. http://dx.doi.org/10.1016/j.molcata.2004.12.01210.1016/j.molcata.2004.12.012Search in Google Scholar
[49] Yang, J. H., Zhang, X., & Liu, W. Y. (2008). Efficient and green tetrahydropyranylation and deprotection of alcohols and phenols by using activated carbon supported sulfuric acid. Chinese Chemical Letters, 19, 893–896. DOI: 10.1016/j.cclet.2008.04.042. http://dx.doi.org/10.1016/j.cclet.2008.04.04210.1016/j.cclet.2008.04.042Search in Google Scholar
[50] Yoon, H. J., Lee, S. M., Kim, J. H., Cho, H. J., Choi, J. W., Lee, S. H., & Lee, Y. S. (2008). Polymer-supported gadolinium triflate as a convenient and efficient Lewis acid catalyst for acetylation of alcohols and phenols. Tetrahedron Letters, 49, 3165–3171. DOI: 10.1016/j.tetlet.2008.03.005. http://dx.doi.org/10.1016/j.tetlet.2008.03.00510.1016/j.tetlet.2008.03.005Search in Google Scholar
[51] Yu, C., Fan, J., Tian, B., Zhao, D., & Stucky, G. D. (2002). High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Advanced Materials, 14, 1742–1745. DOI: 10.1002/1521-4095(20021203)14:23〈1742::AID-ADMA1742〉3.0.CO;2-3. http://dx.doi.org/10.1002/1521-4095(20021203)14:23<1742::AID-ADMA1742>3.0.CO;2-310.1002/1521-4095(20021203)14:23<1742::AID-ADMA1742>3.0.CO;2-3Search in Google Scholar
[52] Zareyee, D., Ghandali, M. S., & Khalilzadeh, M. A. (2011). Sulfonated ordered nanoporous carbon (CMK-5-SO3H) as an efficient and highly recyclable catalyst for the silylation of alcohols and phenols with hexamethyldisilazane (HMDS). Catalysis Letters, 141, 1521–1525. DOI: 10.1007/s10562-011-0621-3. http://dx.doi.org/10.1007/s10562-011-0621-310.1007/s10562-011-0621-3Search in Google Scholar
[53] Zareyee, D., Razaghi Ghadikolaee, A., & Khalilzadeh, M. A. (2012). Highly efficient solvent-free acetylation of alcohols with acetic anhydride catalyzed by recyclable sulfonic acid catalyst (SBA-15-Ph-Pr-SO3H) — An environmentally benign method. Canadian Journal of Chemistry, 90, 464–468. DOI: 10.1139/v2012-018. http://dx.doi.org/10.1139/v2012-01810.1139/v2012-018Search in Google Scholar
© 2013 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides
Articles in the same Issue
- Flexibility of active-site gorge aromatic residues and non-gorge aromatic residues in acetylcholinesterase
- Influence of trace elements supplementation on the production of recombinant frutalin by Pichia pastoris KM71H in fed-batch process
- Mesoporous nanocrystalline MgAl2O4: A new heterogeneous catalyst for the synthesis of 2,4,6-triarylpyridines under solvent-free conditions
- Effective immobilisation of lipase to enhance esterification potential and reusability
- Hydrogen production by steam reforming of glycerol over Ni/Ce/Cu hydroxyapatite-supported catalysts
- Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
- Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
- Selective separation of essential phenolic compounds from olive oil mill wastewater using a bulk liquid membrane
- Evaluation of temperature effect on growth rate of Lactobacillus rhamnosus GG in milk using secondary models
- Fastener effect on magnetic properties of chain compounds of dinuclear ruthenium carboxylates
- Synthesis of novel fluorene-functionalised nanoporous silica and its luminescence behaviour in acidic media
- d-Glucosamine as an efficient and green additive for palladium-catalyzed Heck reaction
- Anti-oxidative properties of bi-1,2,4-triazine bisulphides