Startseite Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Solvent-free acetylation and tetrahydropyranylation of alcohols catalyzed by recyclable sulfonated ordered nanostructured carbon

  • Daryoush Zareyee EMAIL logo , Parastoo Alizadeh , Mohammad Ghandali und Mohammad Khalilzadeh
Veröffentlicht/Copyright: 12. April 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Rapid and practical green acetylation and tetrahydropyranylation routes of structurally diverse alcohols and phenols were applied under solvent-free reaction conditions providing excellent yields, using catalytic amounts of environmentally friendly sulfonated ordered nanoporous carbon (CMK-5-SO3H). Non-toxic nature of the catalyst, its easy handling, recovery and reusability, and the absence of any solvent characterize the presented procedures as efficient methods. These procedures provide methods for the separation of the product by simple filtration.

[1] Augé, C., Warren, C. D., & Jeanloz, R. W. (1980). The synthesis of O-β-d-mannopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-2-deoxy-d-glucopyranose. part II. Carbohydrate Research, 82, 85–95. DOI: 10.1016/s0008-6215(00)85522-6. http://dx.doi.org/10.1016/S0008-6215(00)85522-610.1016/S0008-6215(00)85522-6Suche in Google Scholar

[2] Bodanszky, M., & Ondetti, M. A. (1966). Peptide synthesis (chapter 4). London, UK: Wiley-Interscience. Suche in Google Scholar

[3] Bongini, A., Cardillo, G., Orena, M., & Sandri, S. (1979). A simple and practical method for tetrahydropyranylation of alcohols and phenols. Synthesis, 1979, 618–620. DOI: 10.1055/s-1979-28784. http://dx.doi.org/10.1055/s-1979-2878410.1055/s-1979-28784Suche in Google Scholar

[4] Campelo, J. M., Garcia, A., Lafont, F., Luna, D., & Marinas, J. M. (1994). Spanish sepiolite clay as a new heterogeneous catalyst for the tetrahydropyranylation of alcohols and phenols. Synthetic Communications, 24, 1345–1350. DOI: 10.1080/00397919408011737. http://dx.doi.org/10.1080/0039791940801173710.1080/00397919408011737Suche in Google Scholar

[5] Chauhan, K. K., Frost, C. G., Love, I., & Waite, D. (1999). Indium triflate: An efficient catalyst for acylation reactions. Synlett, 1999, 1743–1744. DOI: 10.1055/s-1999-2941. http://dx.doi.org/10.1055/s-1999-294110.1055/s-1999-2941Suche in Google Scholar

[6] Corey, E. J., Niwa, H., & Knolle, J. (1978). Total synthesis of (S)-12-hydroxy-5,8,14-cis,-10-trans-eicosatetraenoic acid. Journal of the American Chemical Society, 100, 1942–1943. DOI: 10.1021/ja00474a058. http://dx.doi.org/10.1021/ja00474a05810.1021/ja00474a058Suche in Google Scholar

[7] Corma, A. (1995). Inorganic solid acids and their use in acidcatalyzed hydrocarbon reactions. Chemical Reviews, 95, 559–614. DOI: 10.1021/cr00035a006. http://dx.doi.org/10.1021/cr00035a00610.1021/cr00035a006Suche in Google Scholar

[8] Das, B., & Thirupathi, P. (2007). A highly selective and efficient acetylation of alcohols and amines with acetic anhydride using NaHSO4·SiO2 as a heterogeneous catalyst. Journal of Molecular Catalysis A: Chemical, 269, 12–16. DOI: 10.1016/j.molcata.2006.12.029. http://dx.doi.org/10.1016/j.molcata.2006.12.02910.1016/j.molcata.2006.12.029Suche in Google Scholar

[9] Deka, N., & Sarma, J. C. (2001). Microwave-mediated selective monotetrahydropyranylation of symmetrical diols catalyzed by iodine. The Journal of Organic Chemistry, 66, 1947–1948. DOI: 10.1021/jo000863a. http://dx.doi.org/10.1021/jo000863a10.1021/jo000863aSuche in Google Scholar PubMed

[10] Djerassi, C. (Ed.) (1963). Steroid reactions (pp. 76). San Francisco, CA, USA: Holden-Day. Suche in Google Scholar

[11] Firouzabadi, H., Iranpoor, N., Nowrouzi, F., & Amani, K. (2003). Aluminium dodecatungstophosphate (AlPW12O40) as a highly efficient catalyst for the selective acetylation of -OH, -SH and -NH2 functional groups in the absence of solvent at room temperature. Chemical Communications, 2003, 764–765.DOI: 10.1039/b300775h. 10.1039/b300775hSuche in Google Scholar PubMed

[12] Greene, T. W., & Wuts, P. G. M. (1991). Protective groups in organic synthesis (2nd ed.). New York, NY, USA: Wiley. Suche in Google Scholar

[13] Hanson, J. R. (1999). Protective groups in organic synthesis. Malden, MA, USA: Blackwell Science. Suche in Google Scholar

[14] Heravi, M. M., Ajami, D., & Ghassemzadeh, M. (1999). Solvent free tetrahydropyranylation of alcohols and phenols over sulfuric acid adsorbed on silica gel. Synthetic Communications, 29, 1013–1016. DOI: 10.1080/00397919908086065. http://dx.doi.org/10.1080/0039791990808606510.1080/00397919908086065Suche in Google Scholar

[15] Hoyer, S., Laszlo, P., Orlović, M., & Polla, E. (1986). Catalysis by acidic clay of the protective tetrahydropyranylation of alcohols and phenols. Synthesis, 1986, 655–657. DOI: 10.1055/s-1986-31736. http://dx.doi.org/10.1055/s-1986-3173610.1055/s-1986-31736Suche in Google Scholar

[16] Ishihara, K., Kubota, M., Kurihara, H., & Yamamoto, H. (1996). Scandium trifluoromethanesulfonate as an extremely active Lewis acid catalyst in acylation of alcohols with acid anhydrides and mixed anhydrides. The Journal of Organic Chemistry, 61, 4560–4567. DOI: 10.1021/jo952237x. http://dx.doi.org/10.1021/jo952237x10.1021/jo952237xSuche in Google Scholar

[17] Joo, S. H., Choi, S. J., Oh, I., Kwak, J., Liu, Z., Terasaki, O., & Ryoo, R. (2001). Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature, 412, 169–172. DOI: 10.1038/35084046. http://dx.doi.org/10.1038/3508404610.1038/35084046Suche in Google Scholar

[18] Kamal, A., Khan, M. N. A., Reddy, K. S., Srikanth, Y. V. V., & Krishnaji, T. (2007). Al(OTf)3 as a highly efficient catalyst for the rapid acetylation of alcohols, phenols and thiophenols under solvent-free conditions. Tetrahedron Letters, 48, 3813–3818. DOI: 10.1016/j.tetlet.2007.03.162. http://dx.doi.org/10.1016/j.tetlet.2007.03.16210.1016/j.tetlet.2007.03.162Suche in Google Scholar

[19] Karimi, B., & Maleki, J. (2002). Lithium triflate (LiOTf) catalyzed efficient and chemoselective tetrahydropyranylation of alcohols and phenols under mild and neutral reaction conditions. Tetrahedron Letters, 43, 5353–5355. DOI: 10.1016/s0040-4039(02)00892-4. http://dx.doi.org/10.1016/S0040-4039(02)00892-410.1016/S0040-4039(02)00892-4Suche in Google Scholar

[20] Karimi, B., & Ma’mani, L. (2003). Scandium trifluoromethanesulfonate as a recyclable catalyst for efficient methoxymethylation of alcohols. Tetrahedron Letters, 44, 6051–6053. DOI: 10.1016/s0040-4039(03)01481-3. http://dx.doi.org/10.1016/S0040-4039(03)01481-310.1016/S0040-4039(03)01481-3Suche in Google Scholar

[21] Karimi, B., & Zareyee, D. (2008). Design of a highly efficient and water-tolerant sulfonic acid nanoreactor based on tunable ordered porous silica for the von Pechmann reaction. Organic Letters, 10, 3989–3992. DOI: 10.1021/ol8013107. http://dx.doi.org/10.1021/ol801310710.1021/ol8013107Suche in Google Scholar PubMed

[22] Karimi, B., & Zareyee, D. (2009). Solvent-free three component Strecker reaction of ketones using highly recyclable and hydrophobic sulfonic acid based nanoreactors. Journal of Material Chemistry, 19, 8665–8670. DOI: 10.1039/b911388f. http://dx.doi.org/10.1039/b911388f10.1039/b911388fSuche in Google Scholar

[23] Kim, Y. J., & Varma, R. S. (2005). Microwave-assisted preparation of imidazolium-based tetrachloroindate(III) and their application in the tetrahydropyranylation of alcohols. Tetrahedron Letters, 46, 1467–1469. DOI: 10.1016/j.tetlet.2005.01.025. http://dx.doi.org/10.1016/j.tetlet.2005.01.02510.1016/j.tetlet.2005.01.025Suche in Google Scholar

[24] Kumar, P., Dinesh, C. U., Reddy, R. S., & Pandey, B. (1993). HY zeolite: a mild and efficient catalyst for the tetrahydropyranylation of alcohols. Synthesis, 1993, 1069–1070. DOI: 10.1055/s-1993-25998. 10.1055/s-1993-25998Suche in Google Scholar

[25] Mineno, T. (2002). A fast and practical approach to tetrahydropyranylation and depyranylation of alcohols using indium triflate. Tetrahedron Letters, 43, 7975–7978. DOI: 10.1016/s0040-4039(02)01864-6. http://dx.doi.org/10.1016/S0040-4039(02)01864-610.1016/S0040-4039(02)01864-6Suche in Google Scholar

[26] Naik, A., Gopinath, R., & Patel, B. K. (2001). Tetrabutylammonium tribromide (TBATB)-promoted tetrahydropyranylation/depyranylation of alcohols. Tetrahedron Letters, 42, 7679–7681. DOI: 10.1016/s0040-4039(01)01599-4. http://dx.doi.org/10.1016/S0040-4039(01)01599-410.1016/S0040-4039(01)01599-4Suche in Google Scholar

[27] Niknam, K., & Saberi, D. (2009). Preparation of sulfuric acid ([3-(3-silicapropyl)sulfanyl]propyl)ester: A new and recyclable catalyst for the formylation and acetylation of alcohols under heterogeneous conditions. Applied Catalysis A: General, 366, 220–225. DOI: 10.1016/j.apcata.2009.07.014. http://dx.doi.org/10.1016/j.apcata.2009.07.01410.1016/j.apcata.2009.07.014Suche in Google Scholar

[28] Nishiguchi, T., & Kawamine, K. (1990). Selective monoetherification of 1, n-diols catalysed by aluminium sulphate supported on silica gel. Journal of the Chemical Society, Chemical Communications, 1990, 1766–1767. DOI: 10.1039/c39900001766. http://dx.doi.org/10.1039/c3990000176610.1039/c39900001766Suche in Google Scholar

[29] Olah, G. A., Husain, A., & Singh, B. P. (1983). Catalysis by solid superacids; 191. Simplified and improved polymeric perfluorinated resin sulfonic acid (Nafion-H) catalyzed protection-deprotection reactions. Synthesis, 1983, 892–895. DOI: 10.1055/s-1983-30553. Suche in Google Scholar

[30] Palaniappan, S., Sai Ram, M., & Amarnath, C. A. (2002). Tetrahydropyranylation of alcohols catalyzed by polyaniline salts. Green Chemistry, 2002, 369–371. DOI: 10.1039/b205860j. http://dx.doi.org/10.1039/b205860j10.1039/b205860jSuche in Google Scholar

[31] Phukan, P. (2004). Iodine as an extremely powerful catalyst for the acetylation of alcohols under solvent-free conditions. Tetrahedron Letters, 45, 4785–4787. DOI: 10.1016/j.tetlet.2004.04.076. http://dx.doi.org/10.1016/j.tetlet.2004.04.07610.1016/j.tetlet.2004.04.076Suche in Google Scholar

[32] Rajabi, F. (2009). A heterogeneous cobalt(II) Salen complex as an efficient and reusable catalyst for acetylation of alcohols and phenols. Tetrahedron Letters, 50, 395–397. DOI: 10.1016/j.tetlet.2008.11.024. http://dx.doi.org/10.1016/j.tetlet.2008.11.02410.1016/j.tetlet.2008.11.024Suche in Google Scholar

[33] Ranu, B. C., & Saha, M. (1994). A simple, efficient, and selective method for tetrahydropyranylation of alcohols on a solid phase of alumina impregnated with zinc chloride. The Journal of Organic Chemistry, 59, 8269–8270. DOI: 10.1021/jo00105a054. http://dx.doi.org/10.1021/jo00105a05410.1021/jo00105a054Suche in Google Scholar

[34] Ravindranath, N., Ramesh, C., & Das, B. (2001). Simple, facile and highly selective tetrahydropyranylation of alcohols using silica chloride. Synlett, 2001, 1777–1778. DOI: 10.1055/s-2001-18078. http://dx.doi.org/10.1055/s-2001-1807810.1055/s-2001-18078Suche in Google Scholar

[35] Reddy, B. M., Sreekanth, P. M., & Lakshmanan, P. (2005). Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. Journal of Molecular Catalysis A: Chemical, 237, 93–100. DOI: 10.1016/j.molcata.2005.04.039. http://dx.doi.org/10.1016/j.molcata.2005.04.03910.1016/j.molcata.2005.04.039Suche in Google Scholar

[36] Rice, R. J., Pontikos, N. M., & McCreery, R. L. (1990). Quantitative correlations of heterogeneous electron-transfer kinetics with surface properties of glassy carbon electrodes. Journal of the American Chemical Society, 112, 4617–4622. DOI: 10.1021/ja00168a001. http://dx.doi.org/10.1021/ja00168a00110.1021/ja00168a001Suche in Google Scholar

[37] Romanelli, G., Ruiz, D., Vázquez, P., Thomas, H., & Autino, J. C. (2010). Preyssler heteropolyacid H14[NaP5W29MoO110]: A heterogeneous, green and recyclable catalyst used for the protection of functional groups in organic synthesis. Chemical Engineering Journal, 161, 355–362. DOI: 10.1016/j.cej.2009.12.029. http://dx.doi.org/10.1016/j.cej.2009.12.02910.1016/j.cej.2009.12.029Suche in Google Scholar

[38] Satam, J. R., & Jayaram, R. V. (2008). Acetylation of alcohols, phenols and amines using ammonium salt of 12-tungstophosphoric acid: Environmentally benign method. Catalysis Communications, 9, 2365–2370. DOI: 10.1016/j.catcom.2008.05.033. http://dx.doi.org/10.1016/j.catcom.2008.05.03310.1016/j.catcom.2008.05.033Suche in Google Scholar

[39] Shimizu, K., Hayashi, E., Hatamachi, T., Kodama, T., & Kitamaya, Y. (2004). SO3H-functionalized silica for acetalization of carbonyl compounds with methanol and tetrahydropyranylation of alcohols. Tetrahedron Letters, 45, 5135–5138. DOI: 10.1016/j.tetlet.2004.04.186. http://dx.doi.org/10.1016/j.tetlet.2004.04.18610.1016/j.tetlet.2004.04.186Suche in Google Scholar

[40] Shirini, F., Zolfigol, M. A., & Abri, A. R. (2007). Regioselective tetrahydropyranylation of alcohols catalyzed by Fe(HSO4)3. Chinese Chemical Letters, 18, 803–806. DOI: 10.1016/j.cclet.2007.05.050. http://dx.doi.org/10.1016/j.cclet.2007.05.05010.1016/j.cclet.2007.05.050Suche in Google Scholar

[41] Stephens, J. R., Butler, P. L., Clow, C. H., Oswald, M. C., Smith, R. C., & Mohan, R. S. (2003). Bismuth triflate: an efficient catalyst for the formation and deprotection of tetrahydropyranyl ethers. European Journal of Organic Chemistry, 2003, 3827–3831. DOI: 10.1002/ejoc.200300295. http://dx.doi.org/10.1002/ejoc.20030029510.1002/ejoc.200300295Suche in Google Scholar

[42] Tanemura, K., Horaguchi, T., & Suzuki, T. (1992). 2,3-Dichloro-5,6-dicyano-p-benzoquinone as a mild and efficient catalyst for the tetrahydropyranylation of alcohols. Bulletin of the Chemical Society of Japan, 65, 304–305. DOI: 10.1246/bcsj.65.304. http://dx.doi.org/10.1246/bcsj.65.30410.1246/bcsj.65.304Suche in Google Scholar

[43] van Boom, J. H., Burgers, P. M. J., Owen, G. R., Reese, C. B., & Saffhill, R. (1971). Approaches to oligoribonucleotide synthesis via phosphotriester intermediates. Journal of the Chemical Society D, Chemical Communications, 1971, 869–871. DOI: 10.1039/c29710000869. http://dx.doi.org/10.1039/c2971000086910.1039/c29710000869Suche in Google Scholar

[44] Wang, Y. G., Wu, X. X., & Jiang, Z. Y. (2004). A mild and efficient selective tetrahydropyranylation of primary alcohols and deprotection of THP ethers of phenols and alcohols using PdCl2(CH3CN)2 as catalyst. Tetrahedron Letters, 45, 2973–2976. DOI: 10.1016/j.tetlet.2004.02.057. http://dx.doi.org/10.1016/j.tetlet.2004.02.05710.1016/j.tetlet.2004.02.057Suche in Google Scholar

[45] Wang, X. Q., Liu, R., Waje, M. M., Chen, Z. W., Yan, Y. S., Bozhilov, K. N., & Feng, P. Y. (2007a). Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst. Chemistry of Materials, 19, 2395–2397. DOI: 10.1021/cm070278r. http://dx.doi.org/10.1021/cm070278r10.1021/cm070278rSuche in Google Scholar

[46] Wang, M., Song, Z. G., Gong, H., & Jiang, H. (2007b). Copper methanesulfonate-acetic acid as a novel catalytic system for tetrahydropyranylation of alcohols and phenols. Chinese Chemical Letters, 18, 799–802. DOI: 10.1016/j.cclet.2007.05.001. http://dx.doi.org/10.1016/j.cclet.2007.05.00110.1016/j.cclet.2007.05.001Suche in Google Scholar

[47] Williams, D. B. G., Simelane, S. B., Lawton, M., & Kinfe, H. H. (2010). Efficient tetrahydropyranyl and tetrahydrofuranyl protection/deprotection of alcohols and phenols with Al(OTf)3 as catalyst. Tetrahedron, 66, 4573–4576. DOI: 10.1016/j.tet.2010.04.053. http://dx.doi.org/10.1016/j.tet.2010.04.05310.1016/j.tet.2010.04.053Suche in Google Scholar

[48] Yadav, J. S., Narsaiah, A. V., Reddy, B. V. S., Basak, A. K., & Nagaiah, K. (2005). Niobium(V) chloride: an efficient catalyst for selective acetylation of alcohols and phenols. Journal of Molecular Catalysis A: Chemical, 230, 107–111. DOI: 10.1016/j.molcata.2004.12.012. http://dx.doi.org/10.1016/j.molcata.2004.12.01210.1016/j.molcata.2004.12.012Suche in Google Scholar

[49] Yang, J. H., Zhang, X., & Liu, W. Y. (2008). Efficient and green tetrahydropyranylation and deprotection of alcohols and phenols by using activated carbon supported sulfuric acid. Chinese Chemical Letters, 19, 893–896. DOI: 10.1016/j.cclet.2008.04.042. http://dx.doi.org/10.1016/j.cclet.2008.04.04210.1016/j.cclet.2008.04.042Suche in Google Scholar

[50] Yoon, H. J., Lee, S. M., Kim, J. H., Cho, H. J., Choi, J. W., Lee, S. H., & Lee, Y. S. (2008). Polymer-supported gadolinium triflate as a convenient and efficient Lewis acid catalyst for acetylation of alcohols and phenols. Tetrahedron Letters, 49, 3165–3171. DOI: 10.1016/j.tetlet.2008.03.005. http://dx.doi.org/10.1016/j.tetlet.2008.03.00510.1016/j.tetlet.2008.03.005Suche in Google Scholar

[51] Yu, C., Fan, J., Tian, B., Zhao, D., & Stucky, G. D. (2002). High-yield synthesis of periodic mesoporous silica rods and their replication to mesoporous carbon rods. Advanced Materials, 14, 1742–1745. DOI: 10.1002/1521-4095(20021203)14:23〈1742::AID-ADMA1742〉3.0.CO;2-3. http://dx.doi.org/10.1002/1521-4095(20021203)14:23<1742::AID-ADMA1742>3.0.CO;2-310.1002/1521-4095(20021203)14:23<1742::AID-ADMA1742>3.0.CO;2-3Suche in Google Scholar

[52] Zareyee, D., Ghandali, M. S., & Khalilzadeh, M. A. (2011). Sulfonated ordered nanoporous carbon (CMK-5-SO3H) as an efficient and highly recyclable catalyst for the silylation of alcohols and phenols with hexamethyldisilazane (HMDS). Catalysis Letters, 141, 1521–1525. DOI: 10.1007/s10562-011-0621-3. http://dx.doi.org/10.1007/s10562-011-0621-310.1007/s10562-011-0621-3Suche in Google Scholar

[53] Zareyee, D., Razaghi Ghadikolaee, A., & Khalilzadeh, M. A. (2012). Highly efficient solvent-free acetylation of alcohols with acetic anhydride catalyzed by recyclable sulfonic acid catalyst (SBA-15-Ph-Pr-SO3H) — An environmentally benign method. Canadian Journal of Chemistry, 90, 464–468. DOI: 10.1139/v2012-018. http://dx.doi.org/10.1139/v2012-01810.1139/v2012-018Suche in Google Scholar

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0369-x/html
Button zum nach oben scrollen