Home Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane
Article
Licensed
Unlicensed Requires Authentication

Pertraction of methylene blue using a mixture of D2EHPA/M2EHPA and sesame oil as a liquid membrane

  • Pezhman Kazemi EMAIL logo , Mohammad Peydayesh , Alireza Bandegi , Toraj Mohammadi and Omid Bakhtiari
Published/Copyright: April 12, 2013
Become an author with De Gruyter Brill

Abstract

An experimental study on the pertraction of methylene blue (MB) through a supported liquid membrane (SLM) using a mixture of mono-(2-etylhexyl) ester of phosphoric acid (M2EHPA) and bis-(2-etylhexyl) ester of phosphoric acid (D2EHPA) and sesame oil as the liquid membrane (LM) was performed. Parameters affecting the pertraction of MB such as initial MB concentration, carrier concentration, feed phase pH, and stripping phase concentration were analyzed. Optimal experimental conditions for MB pertraction (permeability of 5.63 × 10−6) were obtained after a 7 h separation with the MB concentration in the feed phase of 80 mg L−1, D2EHPA/M2EHPA concentration in membrane phase of 40 vol. %, feed pH of 6, and acetic acid concentration in the stripping phase of 0.4 mol L−1. Kinetics of transport and stability of the SLM system were also studied and the mass transfer coefficient for this system was evaluated. Scanning electron microscopy (SEM) was used to morphologically characterize the membrane surface.

[1] Alinsafi, A., Khemis, M., Pons, M. N., Leclerc, J. P., Yaacoubi, A., Benhammou, A., & Nejmeddine, A. (2005). Electrocoagulation of reactive textile dyes and textile wastewater. Chemical Engineering and Processing: Process Intensification, 44, 461–470. DOI: 10.1016/j.cep.2004.06.010. 10.1016/j.cep.2004.06.010Search in Google Scholar

[2] Beydilli, M. I., Pavlostathis, S. G., & Tincher, W. C. (2000). Biological decolorization of the azo dye Reactive Red 2 under various oxidation-reduction conditions. Water Environment Research, 72, 698–705. DOI: 10.2175/106143000x138319. http://dx.doi.org/10.2175/106143000X13831910.2175/106143000X138319Search in Google Scholar

[3] Capar, G., Yetis, U., & Yilmaz, L. (2007). The most effective pre-treatment to nanofiltration for the recovery of print dyeing wastewaters. Desalination, 212, 103–113. DOI: 10.1016/j.desal.2006.09.020. http://dx.doi.org/10.1016/j.desal.2006.09.02010.1016/j.desal.2006.09.020Search in Google Scholar

[4] Carneiro, P. A., Osugi, M. E., Fugivara, C. S., Boralle, N., Furlan, M., & Zanoni, M. V. B. (2005). Evaluation of different electrochemical methods on the oxidation and degradation of Reactive Blue 4 in aqueous solution. Chemosphere, 59, 431–439. DOI: 10.1016/j.chemosphere.2004.10.043. http://dx.doi.org/10.1016/j.chemosphere.2004.10.04310.1016/j.chemosphere.2004.10.043Search in Google Scholar

[5] Cengiz, S., & Cavas, L. (2008). Removal of methylene blue by invasive marine seaweed: Caulerpa racemosa var. cylindracea. Bioresource Technology, 99, 2357–2363. DOI: 10.1016/j.biortech.2007.05.011. http://dx.doi.org/10.1016/j.biortech.2007.05.01110.1016/j.biortech.2007.05.011Search in Google Scholar

[6] Chakrabarty, K., Saha, P., & Ghoshal, A. K. (2010). Separation of mercury from its aqueous solution through supported liquid membrane using environmentally benign diluent. Journal of Membrane Science, 350, 395–401. DOI: 10.1016/j.memsci.2010.01.016. http://dx.doi.org/10.1016/j.memsci.2010.01.01610.1016/j.memsci.2010.01.016Search in Google Scholar

[7] Chakraborty, M., Dobaria, D., & Parikh, P. A. (2010). Performance and stability study of vegetable oil based Supported Liquid Membrane. Indian Journal of Chemical Technology, 17, 126–132. Search in Google Scholar

[8] Das, C., Rungta, M., Arya, G., DasGupta, S., & De, S. (2008). Removal of dyes and their mixtures from aqueous solution using liquid emulsion membrane. Journal of Hazardous Materials, 159, 365–371. DOI: 10.1016/j.jhazmat.2008.02.027. http://dx.doi.org/10.1016/j.jhazmat.2008.02.02710.1016/j.jhazmat.2008.02.027Search in Google Scholar

[9] Garza-Tovar, L. L., Torres-Martínez, L. M., Bernal Rodríguez, D., Gómez, R., & del Angel, G. (2006). Photocatalytic degradation of methylene blue on Bi2MNbO7 (M = Al, Fe, In, Sm) sol-gel catalysts. Journal of Molecular Catalysis A: Chemical, 247, 283–290. DOI: 10.1016/j.molcata.2005.11.053. http://dx.doi.org/10.1016/j.molcata.2005.11.05310.1016/j.molcata.2005.11.053Search in Google Scholar

[10] Ge, J. T., & Qu, J. H. (2003). Degradation of azo dye acid red B on manganese dioxide in the absence and presence of ultrasonic irradiation. Journal of Hazardous Materials, 100, 197–207. DOI: 10.1016/s0304-3894(03)00105-5. http://dx.doi.org/10.1016/S0304-3894(03)00105-510.1016/S0304-3894(03)00105-5Search in Google Scholar

[11] Gholivand, M. B., & Khorsandipoor, S. (2000). Selective and efficient uphill transport of Cu(II) through bulk liquid membrane using N-ethyl-2-aminocyclopentene-1-dithiocarboxylic acid as carrier. Journal of Membrane Science, 180, 115–120. DOI: 10.1016/s0376-7388(00)00523-8. http://dx.doi.org/10.1016/S0376-7388(00)00523-810.1016/S0376-7388(00)00523-8Search in Google Scholar

[12] Gupta, V. K., & Suhas (2009). Application of low-cost adsorbents for dye removal — A review. Journal of Environmental Management, 90, 2313–2342. DOI: 10.1016/j.jenvman.2008.11.017. http://dx.doi.org/10.1016/j.jenvman.2008.11.01710.1016/j.jenvman.2008.11.017Search in Google Scholar

[13] Hajarabeevi, N., Mohammed Bilal, I., Easwaramoorthy, D., & Palanivelu, K. (2009). Facilitated transport of cationic dyes through a supported liquid membrane with D2EHPA as carrier. Desalination, 245, 19–27. DOI: 10.1016/j.desal.2008.06.009. http://dx.doi.org/10.1016/j.desal.2008.06.00910.1016/j.desal.2008.06.009Search in Google Scholar

[14] He, D. S., Ma, M., & Zhao, Z. H. (2000). Transport of cadmium ions through a liquid membrane containing amine extractants as carriers. Journal of Membrane Science, 169, 53–59. DOI: 10.1016/s0376-7388(99)00328-2. http://dx.doi.org/10.1016/S0376-7388(99)00328-210.1016/S0376-7388(99)00328-2Search in Google Scholar

[15] Kulkarni, P. S., Mukhopadhyay, S., Bellary, M. P., & Ghosh, S. K. (2002). Studies on membrane stability and recovery of uranium (VI) from aqueous solutions using a liquid emulsion membrane process. Hydrometallurgy, 64, 49–58. DOI: 10.1016/s0304-386x(02)00006-3. http://dx.doi.org/10.1016/S0304-386X(02)00006-310.1016/S0304-386X(02)00006-3Search in Google Scholar

[16] Lakshmi, S., Renganathan, R., & Fujita, S. (1995). Study on TiO2-mediated photocatalytic degradation of methylene blue. Journal of Photochemistry and Photobiology A: Chemistry, 88, 163–167. DOI: 10.1016/1010-6030(94)04030-6. http://dx.doi.org/10.1016/1010-6030(94)04030-610.1016/1010-6030(94)04030-6Search in Google Scholar

[17] Lee, S. C. (2000). Continuous extraction of penicillin G by emulsion liquid membranes with optimal surfactant compositions. Chemical Engineering Journal, 79, 61–67. DOI: 10.1016/s1385-8947(00)00173-x. http://dx.doi.org/10.1016/S1385-8947(00)00173-X10.1016/S1385-8947(00)00173-XSearch in Google Scholar

[18] Lin, S. H., & Lin, C. M. (1993). Treatment of textile waste effluents by ozonation and chemical coagulation. Water Research, 27, 1743–1748. DOI: 10.1016/0043-1354(93)90112-u. http://dx.doi.org/10.1016/0043-1354(93)90112-U10.1016/0043-1354(93)90112-USearch in Google Scholar

[19] Lin, S. H., & Peng, C. F. (1994). Treatment of textile wastewater by electrochemical method. Water Research, 28, 277–282. DOI: 10.1016/0043-1354(94)90264-x. http://dx.doi.org/10.1016/0043-1354(94)90264-X10.1016/0043-1354(94)90264-XSearch in Google Scholar

[20] Madaeni, S. S., Jamali, Z., & Islami, N. (2011). Highly efficient and selective transport of methylene blue through a bulk liquid membrane containing Cyanex 301 as carrier. Separation and Purification Technology, 81, 116–123. DOI: 10.1016/j.seppur.2011.07.004. http://dx.doi.org/10.1016/j.seppur.2011.07.00410.1016/j.seppur.2011.07.004Search in Google Scholar

[21] Marták, J., Schlosser, Š., & Blahušiak, M. (2011). Mass-transfer in pertraction of butyric acid by phosphonium ionic liquids and dodecane. Chemical Papers, 65, 608–619. DOI: 10.2478/s11696-011-0069-3. http://dx.doi.org/10.2478/s11696-011-0069-310.2478/s11696-011-0069-3Search in Google Scholar

[22] Muthuraman, G., & Palanivelu, K. (2006). Transport of textile dye in vegetable oils based supported liquid membrane. Dyes and Pigments, 70, 99–104. DOI: 10.1016/j.dyepig.2005.05.002. http://dx.doi.org/10.1016/j.dyepig.2005.05.00210.1016/j.dyepig.2005.05.002Search in Google Scholar

[23] Muthuraman, G., & Teng, T. T. (2009). Use of vegetable oil in supported liquid membrane for the transport of Rhodamine B. Desalination, 249, 1062–1066. DOI: 10.1016/j.desal.2009.05.017. http://dx.doi.org/10.1016/j.desal.2009.05.01710.1016/j.desal.2009.05.017Search in Google Scholar

[24] Muthuraman, G., Teng, T. T., Leh, C. P., & Norli, I. (2009). Extraction and recovery of methylene blue from industrial wastewater using benzoic acid as an extractant. Journal of Hazardous Materials, 163, 363–369. DOI: 10.1016/j.jhazmat.2008.06.122. http://dx.doi.org/10.1016/j.jhazmat.2008.06.12210.1016/j.jhazmat.2008.06.122Search in Google Scholar

[25] Nigam, P., Armour, G., Banat, I. M., Singh, D., & Marchant, R. (2000). Physical removal of textile dyes from effluents and solid-state fermentation of dye-adsorbed agricultural residues. Bioresource Technology, 72, 219–226. DOI: 10.1016/s0960-8524(99)00123-6. http://dx.doi.org/10.1016/S0960-8524(99)00123-610.1016/S0960-8524(99)00123-6Search in Google Scholar

[26] Oberta, A., Wasilewski, J., Świątkowski, M., & Wódzki, R. (2012). AApplication of 2-(octylsulphanyl)benzoic acid as Pb2+ selective ionophore in hybrid membrane system. Chemical Papers, 66, 26–32. DOI: 10.2478/s11696-011-0101-7. http://dx.doi.org/10.2478/s11696-011-0101-710.2478/s11696-011-0101-7Search in Google Scholar

[27] Panizza, M., Barbucci, A., Ricotti, R., & Cerisola, G. (2007). Electrochemical degradation of methylene blue. Separation and Purification Technology, 54, 382–387. DOI: 10.1016/j.seppur.2006.10.010. http://dx.doi.org/10.1016/j.seppur.2006.10.01010.1016/j.seppur.2006.10.010Search in Google Scholar

[28] Senthilkumaar, S., Kalaamani, P., Porkodi, K., Varadarajan, P. R., & Subburaam, C. V. (2006). Adsorption of dissolved Reactive red dye from aqueous phase onto activated carbon prepared from agricultural waste. Bioresource Technology, 97, 1618–1625. DOI: 10.1016/j.biortech.2005.08.001. http://dx.doi.org/10.1016/j.biortech.2005.08.00110.1016/j.biortech.2005.08.001Search in Google Scholar

[29] Swatloski, R. P., Holbrey, J. D., & Rogers, R. D. (2003). Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphate. Green Chemistry, 5, 361–363. DOI: 10.1039/b304400a. http://dx.doi.org/10.1039/b304400a10.1039/b304400aSearch in Google Scholar

[30] Szczepański, P., Szczepańska, G., & Wódzki, R. (2012). Bondgraph description and simulation of membrane processes: Permeation in a compartmental membrane system. Chemical Papers, 66, 999–1009. DOI: 10.2478/s11696-012-0204-9 http://dx.doi.org/10.2478/s11696-012-0204-910.2478/s11696-012-0204-9Search in Google Scholar

[31] Terry, R. E., Li, N. N., & Ho, W. S. (1982). Extraction of phenolic compounds and organic acids by liquid membranes. Journal of Membrane Science, 10, 305–323. DOI: 10.1016/s0376-7388(00)81416-7. http://dx.doi.org/10.1016/S0376-7388(00)81416-710.1016/S0376-7388(00)81416-7Search in Google Scholar

[32] Thunhorst, K. L., Noble, R. D., & Bowman, C. N. (1997). Transport of ionic species through functionalized poly(vinylbenzyl chloride) membranes. Journal of Membrane Science, 128, 183–193. DOI: 10.1016/s0376-7388(96)00302-x. http://dx.doi.org/10.1016/S0376-7388(96)00302-X10.1016/S0376-7388(96)00302-XSearch in Google Scholar

[33] Van de Voorde, I., Pinoy, L., & De Ketelaere, R. F. (2004). Recovery of nickel ions by supported liquid membrane (SLM) extraction. Journal of Membrane Science, 234, 11–21. DOI: 10.1016/j.memsci.2004.01.002. http://dx.doi.org/10.1016/j.memsci.2004.01.00210.1016/j.memsci.2004.01.002Search in Google Scholar

[34] van der Zee, F. P., & Villaverde, S. (2005). Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies. Water Research, 39, 1425–1440. DOI: 10.1016/j.watres.2005.03.007. http://dx.doi.org/10.1016/j.watres.2005.03.00710.1016/j.watres.2005.03.007Search in Google Scholar

[35] Vasanth Kumar, K., & Kumaran, A. (2005). Removal of methylene blue by mango seed kernel powder. Biochemical Engineering Journal, 27, 83–93. DOI: 10.1016/j.bej.2005.08.004. http://dx.doi.org/10.1016/j.bej.2005.08.00410.1016/j.bej.2005.08.004Search in Google Scholar

[36] Venkateswaran, P., & Palanivelu, K. (2006). Recovery of phenol from aqueous solution by supported liquid membrane using vegetable oils as liquid membrane. Journal of Hazardous Materials, 131, 146–152. DOI: 10.1016/j.jhazmat.2005.09.025. http://dx.doi.org/10.1016/j.jhazmat.2005.09.02510.1016/j.jhazmat.2005.09.025Search in Google Scholar

[37] Vijayaraghavan, K., Ramanujam, T. K., & Balasubramanian, N. (2001). In situ hypochlorous acid generation for the treatment of textile wastewater. Coloration Technology, 117, 49–53. DOI: 10.1111/j.1478-4408.2001.tb00335.x. http://dx.doi.org/10.1111/j.1478-4408.2001.tb00335.x10.1111/j.1478-4408.2001.tb00335.xSearch in Google Scholar

[38] Wang, Z. H., Jiang, Y. L., & Fu, J. F. (1996). The entrainment swelling of emulsion during lactic acid extraction by LSMs. Journal of Membrane Science, 109, 25–34. DOI: 10.1016/0376-7388 (95)00156-5. http://dx.doi.org/10.1016/0376-7388(95)00156-510.1016/0376-7388(95)00156-5Search in Google Scholar

[39] Yahaya, G. O., Brisdon, B. J., & England, R. (2000). Facilitated transport of lactic acid and its ethyl ester by supported liquid membranes containing functionalized polyorganosiloxanes as carriers. Journal of Membrane Science, 168, 187–201. DOI: 10.1016/s0376-7388(99)00312-9. http://dx.doi.org/10.1016/S0376-7388(99)00312-910.1016/S0376-7388(99)00312-9Search in Google Scholar

[40] Zha, F. F., Fane, A. G., & Fell, C. J. D. (1995). Instability mechanisms of supported liquid membranes in phenol transport process. Journal of Membrane Science, 107, 59–74. DOI: 10.1016/0376-7388(95)00104-k. http://dx.doi.org/10.1016/0376-7388(95)00104-K10.1016/0376-7388(95)00104-KSearch in Google Scholar

[41] Zheng, H. D., Wang, B. Y., Wu, Y. X., & Ren, Q. L. (2009a). Instability mechanisms of supported liquid membranes for copper (II) ion extraction. Colloids and Surface A, 351, 38–45. DOI: 10.1016/j.colsurfa.2009.09.028. http://dx.doi.org/10.1016/j.colsurfa.2009.09.02810.1016/j.colsurfa.2009.09.028Search in Google Scholar

[42] Zheng, H. D., Wang, B. Y., Wu, Y. X., & Ren, Q. L. (2009b). Instability mechanisms of supported liquid membrane for phenol transport. Chinese Journal of Chemical Engineering, 17, 750–755. DOI: 10.1016/s1004-9541(08)60272-4. http://dx.doi.org/10.1016/S1004-9541(08)60272-410.1016/S1004-9541(08)60272-4Search in Google Scholar

Published Online: 2013-4-12
Published in Print: 2013-7-1

© 2013 Institute of Chemistry, Slovak Academy of Sciences

Downloaded on 27.11.2025 from https://www.degruyterbrill.com/document/doi/10.2478/s11696-013-0374-0/html
Scroll to top button