Startseite Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate

  • Ming-Qin Chang EMAIL logo , Feng Gao , Yang Li und Wen-Tao Gao
Veröffentlicht/Copyright: 9. Januar 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

An efficient method has been developed for the synthesis of a novel β-keto ester-containing pyranoquinoline compound, i.e., ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate. The method entails a two-step synthesis. The first step involves the Williamson-type reaction of ethyl 2-bromomethyl-3-quinoline-3-carboxylate with ethyl hydroxyacetate in anhydrous benzene to afford the intermediate ethyl 2-[(2-ethoxy-2-oxoethoxy)methyl]quinoline-3-carboxylate. The second step includes the Dieckmann condensation reaction of the resulting intermediate in the presence of sodium ethoxide in anhydrous toluene to afford the desired pyranoquinoline containing β-keto ester moiety. Keto-enol tautomerism of the compound thus obtained was investigated by spectroscopic methods.

[1] Adepu, R., Rambabu, D., Prasad, B., Meda, C. L. T., Kandale, A., Krishna, G. R., Reddy, C. M., Chennuru, L. N., Parsa, K. V. L., & Pal, M. (2012). Novel thieno[2,3-d]pyrimidines: their design, synthesis, crystal structure analysis and pharmacological evaluation. Organic & Biomolecular Chemistry, 10, 5554–5569. DOI: 10.1039/c2ob25420d. http://dx.doi.org/10.1039/c2ob25420d10.1039/c2ob25420dSuche in Google Scholar

[2] Allegretti, P. E., Schiavoni, M. M., Di Loreto, H. E., Furlong, J. J. P., & Della Védova, C. O. (2001). Separation of keto-enol tautomers in β-ketoesters: a gas chromatography-mass spectrometric study. Journal of Molecular Structure, 560, 327–335. DOI: 10.1016/s0022-2860(00)00773-0. http://dx.doi.org/10.1016/S0022-2860(00)00773-010.1016/S0022-2860(00)00773-0Suche in Google Scholar

[3] Balamurugan, K., Jeyachandran, V., Perumal, S., Manjashetty, T. H., Yogeeswari, P., & Sriram, D. (2010). A microwaveassisted, facile, regioselective Friedländer synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno-[3,2-b]quinolines. European Journal of Medicinal Chemistry, 45, 682–688. DOI: 10.1016/j.ejmech.2009.11.011. http://dx.doi.org/10.1016/j.ejmech.2009.11.01110.1016/j.ejmech.2009.11.011Suche in Google Scholar

[4] Bandgar, B. P., Pandit, S. S., & Sadavarte, V. S. (2001). Montmorillonite K-10 catalyzed synthesis of β-keto esters: condensation of ethyl diazoacetate with aldehydes under mild conditions. Green Chemistry, 3, 247–249. DOI: 10.1039/b104116a. http://dx.doi.org/10.1039/b104116a10.1039/b104116aSuche in Google Scholar

[5] Chandra, A., Singh, B., Khanna, R. S., & Singh, R. M. (2009). Copper-free palladium-catalyzed Sonogashira coupling-annulation: Efficient one-pot synthesis of functionalized pyrano [4,3-b]quinolines from 2-chloro-3-formylquinolines. The Journal of Organic Chemistry, 74, 5664–5666. DOI: 10.1021/jo900606j. http://dx.doi.org/10.1021/jo900606j10.1021/jo900606jSuche in Google Scholar

[6] Chen, I. S., Tsai, I. W., Teng, C. M., Chen, J. J., Chang, Y. L., Ko, F. N., Lu, M. C., & Pezzuto, J. M. (1997). Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry, 46, 525–529. DOI: 10.1016/s0031-9422(97)00280-x. http://dx.doi.org/10.1016/S0031-9422(97)00280-X10.1016/S0031-9422(97)00280-XSuche in Google Scholar

[7] Cimanga, K., De Bruyne, T., Pieters, L., & Vlietinck, A. J. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 60, 688–691. DOI: 10.1021/np9605246. http://dx.doi.org/10.1021/np960524610.1021/np9605246Suche in Google Scholar PubMed

[8] Cui, H. F., Dong, K. Y., Nie, J., Zheng, Y., & Ma, J. A. (2010). Lewis acid-catalyzed one-pot sequential reaction for the synthesis of α-halogenated β-keto esters. Tetrahedron Letters, 51, 2374–2377. DOI: 10.1016/j.tetlet.2010.02.158. http://dx.doi.org/10.1016/j.tetlet.2010.02.15810.1016/j.tetlet.2010.02.158Suche in Google Scholar

[9] Cui, L. Q., Dong, Z. L., Liu, K., & Zhang, C. (2011). Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group. Organic Letters, 13, 6488–6491. DOI: 10.1021/ol202777h. http://dx.doi.org/10.1021/ol202777h10.1021/ol202777hSuche in Google Scholar PubMed

[10] Dolle, R. E., & Nelson, K. H., Jr. (1999). Comprehensive survey of combinatorial library synthesis: 1998. Journal of Combinatorial Chemistry, 1, 235–282. DOI: 10.1021/cc9900192. http://dx.doi.org/10.1021/cc990019210.1021/cc9900192Suche in Google Scholar PubMed

[11] Dudley, M. E., Morshed, M. M., Brennan, C. L., Islam, M. S., Ahmad, M. S., Atuu, M. R., Branstetter, B., & Hossain, M. M. (2004). Acid-catalyzed reactions of aromatic aldehydes with ethyl diazoacetate: An investigation on the synthesis of 3-hydroxy-2-arylacrylic acid ethyl esters. The Journal of Organic Chemistry, 69, 7599–7608. DOI: 10.1021/jo0489418. http://dx.doi.org/10.1021/jo048941810.1021/jo0489418Suche in Google Scholar

[12] Faber, K., Stuckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents. 1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the Wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21, 1177–1181. DOI: 10.1002/jhet.5570210450. http://dx.doi.org/10.1002/jhet.557021045010.1002/jhet.5570210450Suche in Google Scholar

[13] Gao, W., Zhang, C., Li, Y., & Jiang, Y. (2009). Effective preparation and fluorescent properties of novel naphthooxepinoquinolinones and naphthoacridinediones. Chinese Journal of Organic Chemistry, 29, 1423–1428. Suche in Google Scholar

[14] Gao, W., Zhang, C., & Li, Y. (2010). A novel one-pot three-step synthesis of 2-(1-benzofuran-2-yl)quinoline-3-carboxylic acid derivatives. Journal of the Brazilian Chemical Society, 21, 806–812. DOI: 10.1590/s0103-50532010000500007. http://dx.doi.org/10.1590/S0103-5053201000050000710.1590/S0103-50532010000500007Suche in Google Scholar

[15] Gao, W., Liu, J., Jiang, Y., & Li, Y. (2011). First synthesis of 2-(benzofuran-2-yl)-6,7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein Journal of Organic Chemistry, 7, 210–217. DOI: 10.3762/bjoc.7.28. http://dx.doi.org/10.3762/bjoc.7.2810.3762/bjoc.7.28Suche in Google Scholar

[16] Gao, W., Jiang, Y., Li, Y., Li, F., & Yan, Y. (2012). A novel and facile synthesis of 2-(benzofuran-2-yl)benzo[h]quinoline-3-carboxylic acid derivatives. Chinese Journal of Chemistry, 30, 822–826. DOI: 10.1002/cjoc.201100389. http://dx.doi.org/10.1002/cjoc.20110038910.1002/cjoc.201100389Suche in Google Scholar

[17] Ghosh, S., Nandakumar, M. V., Krautscheid, H., & Schneider, C. (2010). Copper-bipyridine-catalyzed enantioselective α-amination of β-keto esters. Tetrahedron Letters, 51, 1860–1862. DOI: 10.1016/j.tetlet.2010.02.007. http://dx.doi.org/10.1016/j.tetlet.2010.02.00710.1016/j.tetlet.2010.02.007Suche in Google Scholar

[18] Gould, K. J., Manners, C. N., Payling, D. W., Suschitzky, J. L., & Wells, E. (1988). Predictive structure-activity relationships in a series of pyranoquinoline derivatives. A new primate model for the identification of antiallergic activity. Journal of Medicinal Chemistry, 31, 1445–1453. DOI: 10.1021/jm00402a033. http://dx.doi.org/10.1021/jm00402a03310.1021/jm00402a033Suche in Google Scholar

[19] Hayashi, Y., Toyoshima, M., Gotoh, H., & Ishikawa, H. (2009). Diphenylprolinol silyl ether catalysis in an asymmetric formal carbo [3 + 3] cycloaddition reaction via a domino Michael/Knoevenagel condensation. Organic Letters, 11, 45–48. DOI: 10.1021/ol802330h. http://dx.doi.org/10.1021/ol802330h10.1021/ol802330hSuche in Google Scholar

[20] Iglesias, E. (2004). Application of organized microstructures to study keto-enol equilibrium of β-dicarbonyl compounds. Current Organic Chemistry, 8, 1–24. DOI: 10.2174/1385272043486124. http://dx.doi.org/10.2174/138527204348612410.2174/1385272043486124Suche in Google Scholar

[21] Jios, J. L., & Duddeck, H. (2000). 17O NMR spectroscopy of 1-(2-hydroxyphenyl)-3-naphthylpropane-1,3-diones. Influences of keto-enol tautomerism and substituents. Magnetic Resonance in Chemistry, 38, 512–514. DOI: 10.1002/1097-458X(200007)38:7〈512::AID-MRC664〉3.0.CO;2-Z. http://dx.doi.org/10.1002/1097-458X(200007)38:7<512::AID-MRC664>3.0.CO;2-Z10.1002/1097-458X(200007)38:7<512::AID-MRC664>3.0.CO;2-ZSuche in Google Scholar

[22] Jonckers, T. H. M., van Miert, S., Cimanga, K., Bailly, C., Colson, P., De Pauw-Gillet, M. C., van den Heuvel, H., Claeys, M., Lemière, F., Esmans, E. L., Rozenski, J., Quirijnen, L., Maes, L., Dommisse, R., Lemière, G. L. F., Vlietinck, A., & Pieters, L. (2002). Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new Neocryptolepine derivatives. Journal of Medicinal Chemistry, 45, 3497–3508. DOI: 10.1021/jm011102i. http://dx.doi.org/10.1021/jm011102i10.1021/jm011102iSuche in Google Scholar PubMed

[23] Kalita, P. K., Baruah, B., & Bhuyan, P. J. (2006). Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Letters, 47, 7779–7782. DOI: 10.1016/j.tetlet.2006.08.086. http://dx.doi.org/10.1016/j.tetlet.2006.08.08610.1016/j.tetlet.2006.08.086Suche in Google Scholar

[24] Kuninobu, Y., Morita, J., Nishi, M., Kawata, A., & Takai, K. (2009). Rhenium-catalyzed formation of bicyclo[3.3.1]nonene frameworks by a reaction of cyclic β-keto esters with terminal alkynes. Organic Letters, 11, 2535–2537. DOI: 10.1021/ol900772h. http://dx.doi.org/10.1021/ol900772h10.1021/ol900772hSuche in Google Scholar PubMed

[25] Little, A., & Porco, J. A., Jr. (2012). Total syntheses of Graphisin A and Sydowinin B. Organic Letters, 14, 2862–2865. DOI: 10.1021/ol301107m. http://dx.doi.org/10.1021/ol301107m10.1021/ol301107mSuche in Google Scholar PubMed PubMed Central

[26] Li, Y., Zhang, C., Sun, M., & Gao, W. (2009). Facile synthesis of 10-tert-butyl[1]benzoxepino[3,4-b][1,3]-dioxolo[4,5-g]quinolin-12(6H)-ones. Journal of Heterocyclic Chemistry, 46, 1190–1194. DOI: 10.1002/jhet.203. http://dx.doi.org/10.1002/jhet.20310.1002/jhet.203Suche in Google Scholar

[27] Liao, M., & Wang, J. (2006). CuSO4-catalyzed diazo decomposition in water: a practical synthesis of β-keto esters. Tetrahedron Letters, 47, 8859–8861. DOI: 10.1016/j.tetlet.2006.10.059. http://dx.doi.org/10.1016/j.tetlet.2006.10.05910.1016/j.tetlet.2006.10.059Suche in Google Scholar

[28] Magesh, C. J., Makesh, S. V., & Perumal, P. T. (2004). Highly diastereoselective inverse electron demand (IED) Diels-Alder reaction mediated by chiral salen-AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 14, 2035–2040. DOI: 10.1016/j.bmcl.2004.02.057. http://dx.doi.org/10.1016/j.bmcl.2004.02.05710.1016/j.bmcl.2004.02.057Suche in Google Scholar PubMed

[29] Majumdar, K. C., Taher, A., & Ponra, S. (2010). Unusual product from condensative cyclization: Pyrano[3,2-f]quinolin-3,10-diones from 6-amino-5-[(trimethylsilyl)ethynyl]-2H-chromen-2-one and aryl aldehydes. Synlett, 2010, 735–740. DOI: 10.1055/s-0029-1219378. http://dx.doi.org/10.1055/s-0029-121937810.1055/s-0029-1219378Suche in Google Scholar

[30] Matsuya, Y., Katayanagi, H., Ohdaira, T., Wei, Z. L., Kondo, T., & Nemoto, H. (2009). Novel 3,4-diazabenzotropone compounds (2,3-benzodiazepin-5-ones): synthesis, unique reactivity, and biological evaluation. Organic Letters, 11, 1361–1364. DOI: 10.1021/ol900154x. http://dx.doi.org/10.1021/ol900154x10.1021/ol900154xSuche in Google Scholar PubMed

[31] Mohmed, E. A. (1994). Some new quinolones of expected pharmaceutical importance derived from 1,2-dihydro-4-hydroxy-1-methyl-2-oxoquinoline-3-carbaldehyde. Chemical Papers, 48, 261–267. Suche in Google Scholar

[32] Mordant, C., Reymond, S., Tone, H., Lavergne, D., Touati, R., Ben Hassine, B., Ratovelomanana-Vidal, V., & Genet, J. P. (2007). Total synthesis of dolastatin 10 through ruthenium-catalyzed asymmetric hydrogenations. Tetrahedron, 63, 6115–6123. DOI: 10.1016/j.tet.2007.03.036. http://dx.doi.org/10.1016/j.tet.2007.03.03610.1016/j.tet.2007.03.036Suche in Google Scholar

[33] Murata, H., Ishitani, H., & Iwamoto, M. (2008). Selective synthesis of α-substituted β-keto esters from aldehydes and diazoesters on mesoporous silica catalysts. Tetrahedron Letters, 49, 4788–4791. DOI: 10.1016/j.tetlet.2008.05.077. http://dx.doi.org/10.1016/j.tetlet.2008.05.07710.1016/j.tetlet.2008.05.077Suche in Google Scholar

[34] Nawrot-Modranka, J., Nawrot, E., & Graczyk, J. (2006). In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. European Journal of Medicinal Chemistry, 41, 1301–1309. DOI: 10.1016/j.ejmech.2006.06.004. http://dx.doi.org/10.1016/j.ejmech.2006.06.00410.1016/j.ejmech.2006.06.004Suche in Google Scholar

[35] Padwa, A., & Au, A. (1976). Involvement of enol tautomers in the photoisomerization of 3-substituted isochromanones. Journal of the American Chemical Society, 98, 5581–5590. DOI: 10.1021/ja00434a029. http://dx.doi.org/10.1021/ja00434a02910.1021/ja00434a029Suche in Google Scholar

[36] Phun, L. H., Patil, D. V., Cavitt, M. A., & France, S. (2011). A catalytic homo-Nazarov cyclization protocol for the synthesis of heteroaromatic ring-fused cyclohexanones. Organic Letters, 13, 1952–1955. DOI: 10.1021/ol200305n. http://dx.doi.org/10.1021/ol200305n10.1021/ol200305nSuche in Google Scholar

[37] Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40, 4041–4049. DOI: 10.1016/0040-4020(84)85084-x. http://dx.doi.org/10.1016/0040-4020(84)85084-X10.1016/0040-4020(84)85084-XSuche in Google Scholar

[38] Singh, M. K., Chandra, A., Singh, B., & Singh, R. M. (2007). Synthesis of diastereomeric 2,4-disubstituted pyrano[2,3-b]quinolines from 3-formyl-2-quinolones through O-C bond formation via intramolecular electrophilic cyclization. Tetrahedron Letters, 48, 5987–5990. DOI: 10.1016/j.tetlet.2007.06.127. http://dx.doi.org/10.1016/j.tetlet.2007.06.12710.1016/j.tetlet.2007.06.127Suche in Google Scholar

[39] Singh, B., Chandra, A., Singh, S., & Singh, R. M. (2011). Basefree NIS promoted electrophilic cyclization of alkynes: an efficient synthesis of iodo substituted pyrano[4,3-b]quinolines. Tetrahedron, 67, 505–511. DOI: 10.1016/j.tet.2010.10.081. http://dx.doi.org/10.1016/j.tet.2010.10.08110.1016/j.tet.2010.10.081Suche in Google Scholar

[40] Temperini, C., Cecchi, A., Scozzafava, A., & Supuran, C. T. (2009). Carbonic anhydrase inhibitors. Comparison of Chlorthalidone and Indapamide X-ray crystal structures in adducts with isozyme II: When three water molecules and the keto-enol tautomerism make the difference. Journal of Medicinal Chemistry, 52, 322–328. DOI: 10.1021/jm801386n. http://dx.doi.org/10.1021/jm801386n10.1021/jm801386nSuche in Google Scholar PubMed

[41] Witherup, K.M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M., & Varga, S. L. (1995). Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). Journal of the American Chemical Society, 117, 6682–6685. DOI: 10.1021/ja00130a005. http://dx.doi.org/10.1021/ja00130a00510.1021/ja00130a005Suche in Google Scholar

[42] Wu, L., & Yang, D. (2009). Synthesis, characterization and single crystal structure of ethyl 2-(substituted-piperazin-1-ylmethyl)-quinoline-3-carboxylate derivatives. Chinese Journal of Organic Chemistry, 29, 1122–1128. Suche in Google Scholar

[43] Wu, J., Chen, W., Hu, M., Zou, H., & Yu, Y. (2010). Synthesis of polysubstituted 5-aminooxazoles from α-diazocarbonyl esters and α-isocyanoacetamides. Organic Letters, 12, 616–618. DOI: 10.1021/ol902850a. http://dx.doi.org/10.1021/ol902850a10.1021/ol902850aSuche in Google Scholar PubMed

[44] Xue, S., Liu, Y. K., Li, L. Z., & Guo, Q. X. (2005). Zinc-mediated ring-expansion and chain-extension reactions of β-keto esters. The Journal of Organic Chemistry, 70, 8245–8247. DOI: 10.1021/jo0512498. http://dx.doi.org/10.1021/jo051249810.1021/jo0512498Suche in Google Scholar

[45] Yadav, J. S., Subba Reddy, B. V., Eeshwaraiah, B., & Reddy, P. N. (2005). Niobium(V) chloride-catalyzed C-H insertion reactions of α-diazoesters: synthesis of β-keto esters. Tetrahedron, 61, 875–878. DOI: 10.1016/j.tet.2004.11.027. http://dx.doi.org/10.1016/j.tet.2004.11.02710.1016/j.tet.2004.11.027Suche in Google Scholar

[46] Yamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44, 1211–1213. DOI: 10.1016/0006-2952(92)90387-x. http://dx.doi.org/10.1016/0006-2952(92)90387-X10.1016/0006-2952(92)90387-XSuche in Google Scholar

[47] Zhang, Q., Zhang, Z., Yan, Z., Liu, Q., & Wang, T. (2007). A new efficient synthesis of pyranoquinolines from 1-acetyl N-arylcyclopentanecarboxamides. Organic Letters, 9, 3651–3653. DOI: 10.1021/ol701536q. http://dx.doi.org/10.1021/ol701536q10.1021/ol701536qSuche in Google Scholar PubMed

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
  2. Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
  3. Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
  4. Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
  5. Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
  6. Effect of lentil and bean flours on rheological and baking properties of wheat dough
  7. Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
  8. Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
  9. Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
  10. Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
  11. Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
  12. An efficient method for the preparation of benzyl γ-ketohexanoates
  13. Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
  14. Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0276-6/html
Button zum nach oben scrollen