Abstract
The novel complex [Cu(men)2][Cu2Cd2Cl2(CN)6] (I) was isolated from the aqueous-ethanol system containing CuCl2, men (men = N-methylethane-1,2-diamine) and K2[Cd(CN)4] in the presence of dilute hydrochloric acid and chemically and spectroscopically characterised. The crystal structure of I consists of [Cu2I(CN)6] and [Cd2Cl2(CN)6] building units bridged by cyanide ligands and forms a three-dimensional skeleton with cavities. [Cu(men)2]2+ cations in which two men ligands are chelated (mean Cu-N is 2.033(6) Å) are located in the cavities. The coordination polyhedron around the Cu(II) atoms is formed as a tetragonal bipyramidal by two weaker axial Cu-Cl bonds (2.8642(12) Å) with chlorido ligands from the skeleton. The Cu(I) and Cd(II) atoms in the skeleton exhibit tetra-(CuC4 chromophore) and penta-coordination (CdN3Cl2), respectively. The temperature-dependent susceptibility measurements indicate a Curie-Weiss-like behaviour and the presence of weak anti-ferromagnetic interaction.
[1] Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J., & Verschoor, G. C. (1984). Synthesis, structure, and spectroscopic properties of copper(II) compounds containing nitrogen-sulphur donor ligands; the crystal and molecular structure of aqua[1,7-bis(N-methylbenzimidazol-2′-yl)-2,6-dithiaheptane]copper(II) perchlorate. Journal of the Chemical Society, Dalton Transactions, 1984, 1349–1356. DOI: 10.1039/dt9840001349. http://dx.doi.org/10.1039/dt9840001349Suche in Google Scholar
[2] Akitsu, T., & Einaga, Y. (2006). Extremely long axial Cu-N bonds in chiral one-dimensional zigzag cyanide-bridged CuIINiII and CuII-PtII bimetallic assemblies. Inorganic Chemistry, 45, 9826–9833. DOI: 10.1021/ic060783a. http://dx.doi.org/10.1021/ic060783a10.1021/ic060783aSuche in Google Scholar
[3] Akitsu, T., & Einaga, Y. (2008). Tuning of electronic properties of one-dimensional cyano-bridged CuII-NiII, CuII-PdII, and CuII-PtII bimetallic assemblies by stereochemistry of ligands. Inorganica Chimica Acta, 361, 36–42. DOI: 10.1016/j.ica.2007.06.034. http://dx.doi.org/10.1016/j.ica.2007.06.03410.1016/j.ica.2007.06.034Suche in Google Scholar
[4] Akitsu, T., & Endo, Y. (2009). catena-Poly[[bis(N-ethylethylenediamine-κ 2N,N′)copper(II)]-µ-cyanido-κ 2N:C-[dicyanido-κ 2C-palladium(II)]-µ-cyanido-κ 2C:N]. Acta Crystallographica Section E, 65, m406–m407. DOI: 10.1107/s1600536 80900885x. http://dx.doi.org/10.1107/S160053680900885X10.1107/S160053680900885XSuche in Google Scholar
[5] Baran, P., Boča, R., Breza, M., Elias, H., Fuess, H., Jorík, V., Klement, R., & Svoboda, I. (2002). The spectroscopic and structural properties of copper(II) complexes of the novel tridentate (ONO) pyridine N-oxide ligand Hpoxap. Polyhedron, 21, 1561–1571. DOI: 10.1016/s0277-5387(02)01020-3. http://dx.doi.org/10.1016/S0277-5387(02)01020-310.1016/S0277-5387(02)01020-3Suche in Google Scholar
[6] Biltz, W. (1928). Über Molekular- und Atomvolumina. XVII. Zur Raumchemie und Magnetochemie fester Cyanide. Zeitschrift für Anorganische und Allgemeine Chemie, 170, 161–183. DOI: 10.1002/zaac.19281700123. http://dx.doi.org/10.1002/zaac.1928170012310.1002/zaac.19281700123Suche in Google Scholar
[7] Carlin, R. L., & van Dyeneveldt, A. J. (1977). Magnetic properties of transition metal compounds. New York, NY, USA: Springer. http://dx.doi.org/10.1007/978-3-642-87392-810.1007/978-3-642-87392-8Suche in Google Scholar
[8] Ciurtin, D. M., Smith, M. D., & zur Loye, H. C. (2003). Structural diversity in the Cu(pyrazinecarboxylate)2/CdCl2 system: new one-, two- and three-dimensional mixed metal coordination polymers. Dalton Transactions, 2003, 1245–1250. DOI: 10.1039/b212148b. http://dx.doi.org/10.1039/b212148b10.1039/b212148bSuche in Google Scholar
[9] Cernák, J., & Abboud, K. A. (2002). Three different bonding modes of cyano groups in the coordination polymer [Cu(en)2(H2O)][Cu(en)2Ni2Cu2(CN)10]·2H2O (en is 1,2-diaminoethane). Acta Crystallographica, C58, m167–m170. DOI: 10.1107/s0108270101021898. 10.1107/S0108270101021898Suche in Google Scholar PubMed
[10] Cernák, J. (1998). Copper-zinc oxide catalysts. VII. Zn(NH3)0.7 (H2O)0.3Cu(CN)3. Acta Crystallographica, C54, 1551–1553. DOI: 10.1107/s0108270198007021. 10.1107/S0108270198007021Suche in Google Scholar
[11] Čižmár, E., Orendčová, A., Orendáč, M., Kuchár, J., Vavra, M., Potočňák, I., Černák, J., Casini, E., & Feher, A. (2006). Influence of hydrogen bonds of magnetic properties of Cu(dmen)2M(CN)4 (M = Ni, Pt) S=1/2 low-dimensional Heisenberg antiferromagnets. Physica Status Solidi B, 243, 268–271. DOI: 10.1002/pssb.200562521. http://dx.doi.org/10.1002/pssb.20056252110.1002/pssb.200562521Suche in Google Scholar
[12] Desplanches, C., Ruiz, E., Rodriguez-Fortea, A., & Alvarez, S. (2002). Exchange coupling of transition-metal ions through hydrogen bonding: A theoretical investigation. Journal of the American Chemical Society, 124, 5197–5205. DOI: 10.1021/ja0178160. http://dx.doi.org/10.1021/ja017816010.1021/ja0178160Suche in Google Scholar
[13] Dunaj-Jurčo, M., Ondrejovič, G., Melník, M., & Garaj, J. (1988). Mixed-valence copper(I)-copper(II) compounds: analysis and classification of crystallographic data. Coordination Chemistry Review, 83, 1–28. DOI: 10.1016/0010-8545(88)80017-1. http://dx.doi.org/10.1016/0010-8545(88)80017-110.1016/0010-8545(88)80017-1Suche in Google Scholar
[14] Gabelica, Z. (1976). Vibrational studies of metal-ethylenediamine thiosulfates—II. Infrared spectra of Cu(en)2S2O3 and some related bis-ethylenediamine complexes of copper(II). Spectrochimica Acta Part A: Molecular Spectroscopy, 32, 337–344. DOI: 10.1016/0584-8539(76)80086-4. http://dx.doi.org/10.1016/0584-8539(76)80086-410.1016/0584-8539(76)80086-4Suche in Google Scholar
[15] Hanko, J., Orendáč, M., Kuchár, J., Žák, Z., Černák, J., Orendáčová, A., & Feher, A. (2007). Hydrogen bonds mediated magnetism in Cu(bmen)2Pd(CN)4. Solid State Communication, 142, 128–131. DOI: 10.1016/j.ssc.2007.02.009. http://dx.doi.org/10.1016/j.ssc.2007.02.00910.1016/j.ssc.2007.02.009Suche in Google Scholar
[16] Jin, Y., Qi, Y., Batten, S. R., Cao, P., Chen, W., Che, Y., & Zheng, J. (2009). Two three-dimensional cyano-bridged bimetallic cadmium(II) and copper(II)-copper(I) mixedvalence polymer compounds: Crystal structures and thermal stability analysis and magnetic properties. Inorganica Chimica Acta, 362, 3395–3400. DOI: 10.1016/j.ica.2008.04.019. http://dx.doi.org/10.1016/j.ica.2008.04.01910.1016/j.ica.2008.04.019Suche in Google Scholar
[17] Kitazawa, T., Nishikiori, S., Kuroda, R., & Iwamoto, T. (1994). Clathrate compounds of cadmium cyanide and related hosts with cristobalite-like lattice structures. Journal of the Chemical Society, Dalton Transactions, 1994, 1029–1036. DOI: 10.1039/dt9940001029. 10.1039/dt9940001029Suche in Google Scholar
[18] Kuchár, J., Černák, J., Mayerová, Z., Kubáček, P., & Žák, Z. (2003). Preparation, spectral properties and structures of Cu(LN)xNi(CN)4 (LN = N-methylated derivates of 1,2-diaminoethane; x = 1,2). Solid State Phenomena, 90–91, 323–328. DOI: 10.4028/www.scientific.net/ssp.90-91.323. http://dx.doi.org/10.4028/www.scientific.net/SSP.90-91.32310.4028/www.scientific.net/SSP.90-91.323Suche in Google Scholar
[19] Kuchár, J., Cernák, J., & Abboud, K. A. (2004). The onedimensional structure of Cu(dmen)2Pd(CN)4 (dmen is N,N-dimethylethylenediamine). Acta Crystallographica Section C, C60, m492–m494. DOI: 10.1107/s0108270104019146. 10.1107/S0108270104019146Suche in Google Scholar PubMed
[20] Nakamoto, K. (1997). Infrared spectra of inorganic and coordination compounds. New York, NY, USA: Wiley. Suche in Google Scholar
[21] Nishikiori, S., Iwamoto, T., & Yoshino, Y. (1979). Thermal rearrangement of the bridging ethylenediamine ligand to a chelating one accompanied with the liberation of the guest molecules from an En-Td type Cd(en)Cd(CN)4·2C6H6 clathrate. Chemistry Letters, 8, 1509–1512. DOI: 10.1246/cl.1979.1509. http://dx.doi.org/10.1246/cl.1979.150910.1246/cl.1979.1509Suche in Google Scholar
[22] Ondrejovič, G., Kotočová, A., Koman, M., & Segľa, P. (2010). Synthesis, spectral and electrochemical study of coordination molecules Cu4OX6L4: 4-cyanopyridine Cu4OBrnCl(6−n)(4-CNpy)4 complexes. Chemical Papers, 64, 329–338. DOI: 10.2478/s11696-010-0015-9. http://dx.doi.org/10.2478/s11696-010-0015-910.2478/s11696-010-0015-9Suche in Google Scholar
[23] Orendáč, M., Orendáčová, A., Černák, J., & Feher, A. (1995). Magnetic specific heat analysis of Cu(C2H8N2)2Ni(CN)4: A quasi-two-dimensional Heisenberg antiferromagnet. Solid State Communication, 94, 833–835. DOI: 10.1016/0038-1098(95)00165-4. http://dx.doi.org/10.1016/0038-1098(95)00165-410.1016/0038-1098(95)00165-4Suche in Google Scholar
[24] Peng, S. M., & Liaw, D. S. (1986). Cu(II) ion catalytic oxidation of o-phenylenediamine and diaminomaleonitrile and the crystal structure of the final products (C12N4H11)(ClO4)H2O and [Cu5(CN)6(dmf)4]. Inorganica Chimica Acta, 113, L11–L12. DOI: 10.1016/s0020-1693(00)86845-0. http://dx.doi.org/10.1016/S0020-1693(00)86845-010.1016/S0020-1693(00)86845-0Suche in Google Scholar
[25] Sheldrick, G. M. (2008). A short history of SHELX. Acta Crystallographica Section A, A64, 112–122. DOI: 10.1107/s0108767307043930. 10.1107/S0108767307043930Suche in Google Scholar PubMed
[26] Tudor, V., Marin, G., Kavtsov, V., Simonov, Y. A., Julve, M., Lloret, F., & Andruh, M. (2006). Supramolecular copper(II) dimers resulted from hydrogen bond interactions: Synthesis, crystal structures and magnetic properties. Review of the Roumanian Chimie, 51, 367–371. Suche in Google Scholar
[27] Weiss, R., Jansen, G., Boese, R., & Epple, M. (2006). Crystal structure and thermochemical reactivity of an unusual copper complex that contains copper in four different coordination geometries. Dalton Transactions, 2006, 1831–1835. DOI: 10.1039/b514540f. http://dx.doi.org/10.1039/b514540f10.1039/b514540fSuche in Google Scholar PubMed
[28] Yuge, H., & Iwamoto, T. (1993). Cyano-linked structures in polymeric cadmium cyanide-pyridine (py) and -isoquinoline (iquin) complexes: crystal structures of [Cd(py)2][Cd(CN)4], [{Cd(CN)(py)2}3][Cd2(CN)7] and [Cd(iquin)2][Cd(CN)3 (iquin)2]2. Journal of the Chemical Society, Dalton Transactions, 1993, 2841–2847. DOI: 10.1039/dt9930002841. http://dx.doi.org/10.1039/dt9930002841Suche in Google Scholar
[29] Zeleňák, V., Orendáčová, A., Císařová, I., Černák, J., Kravchyna, O. V., Park, J. H., Orendáč, M., Anders, A. G., Feher, A., & Meisel, M. W. (2006). Magneto-structural correlations in Cu(tn)Cl2 (tn = 1,3-diaminopropane): Twodimensional spatially anisotropic triangular magnet formed by hydrogen bonds. Inorganic Chemistry, 45, 1774–1782. DOI: 10.1021/ic0516109. http://dx.doi.org/10.1021/ic051610910.1021/ic0516109Suche in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Artikel in diesem Heft
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Artikel in diesem Heft
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects