Abstract
A new metallomicellar system containing cerium(III), a macrocylic polyamine ligand, and the nonionic surfactant Brij35(polyoxyethylene(23) lauryl ether) was prepared and used as a catalyst in the hydrolysis of bis(4-nitrophenyl) phosphate (BNPP). Catalytic rate of the BNPP hydrolysis was measured kinetically using the UV-VIS spectrophotometric method. The results indicate that the metallomicellar system has relatively high stability and excellent catalytic function in the BNPP hydrolysis; also, the reaction rate of the BNPP catalytic hydrolysis increased by a factor of ca. 1 × 1010 compared to the BNPP spontaneous hydrolysis due to the catalytic effect of the active species and the local concentration effect of the micelles in the metallomicellar system. Experimental results also showed that the mono-hydroxy complex containing the macrocyclic polyamine ligand and cerium(III) is the real active species in the BNPP catalytic hydrolysis, and that the micelles provide a useful catalytic environment for the reaction. On basis of the research results, the reaction mechanism of BNPP catalytic hydrolysis has been proposed.
[1] Anbu, S., Kandaswamy, M., & Varghese, B. (2010). Structural, electrochemical, phosphate-hydrolysis, DNA binding and cleavage studies of new macrocyclic binuclear nickel(II) complexes. Dalton Transactions, 39, 3823–3832. DOI: 10.1039/b923078e. http://dx.doi.org/10.1039/b923078e10.1039/b923078eSearch in Google Scholar
[2] Daniel, R. M. (1996). The upper limits of enzyme thermal stability. Enzyme and Microbial Technology, 19, 74–79. DOI: 10.1016/0141-0229(95)00174-3. http://dx.doi.org/10.1016/0141-0229(95)00174-310.1016/0141-0229(95)00174-3Search in Google Scholar
[3] Douglas, B. E. (1983). Inorganic synthesis (pp. 16). Beijing, China: Sceince Publishing Company. Search in Google Scholar
[4] Ferreira, D. E. C., De Almeida, W. B., Neves, A., & Rocha, W. R. (2008). Theoretical investigation of the reaction mechanism for the phosphate diester hydrolysis using an asymmetric dinuclear metal complex as a biomimetic model of the purple acid phosphatase enzyme. Physical Chemistry Chemical Physics, 10, 7039–7046. DOI: 10.1039/b809189g. http://dx.doi.org/10.1039/b809189g10.1039/b809189gSearch in Google Scholar
[5] Franklin, S. J. (2001). Lanthanide-mediated DNA hydrolysis. Current Opinion in Chemical Biology, 5, 201–208. DOI: 10.1016/s1367-5931(00)00191-5. http://dx.doi.org/10.1016/S1367-5931(00)00191-510.1016/S1367-5931(00)00191-5Search in Google Scholar
[6] Gunnlaugsson, T., O’Brien, J. E., & Mulready, S. (2002). Glycine-alanine conjugated macrocyclic lanthanide ion complexes as artificial ribonucleases. Tetrahedron Letters, 43, 8493–8497. DOI:10.1016/s0040-4039 (02)02071-3. http://dx.doi.org/10.1016/S0040-4039(02)02071-310.1016/S0040-4039(02)02071-3Search in Google Scholar
[7] Iranzo, O., Kovalevsky, A. Y., Morow, J. R., & Richard, J. P. (2003). Physical and kinetic analysis of the cooperative role of metal ions in catalysis of phosphodiester cleavage by a dinuclear Zn(II) complex. Journal of the American Chemical Society, 125, 1988–1993. DOI: 10.1021/ja027728v. http://dx.doi.org/10.1021/ja027728v10.1021/ja027728vSearch in Google Scholar PubMed
[8] Jiang, F. B., Jiang, B. Y., Chen, Y., Yu, X. Q., & Zeng, X. C. (2004). Metallomicellar catalysis: effects of bridge-connecting ligands on the hydrolysis of PNPP catalyzed by Cu(II) complexes of ethoxyl-diamine ligands in micellar solution. Journal of Molecular Catalysis A: Chemical, 210, 9–16. DOI:10.1016/j.molcata.2003.07.019. http://dx.doi.org/10.1016/j.molcata.2003.08.02910.1016/j.molcata.2003.07.019Search in Google Scholar
[9] Jiang, W. D., Xu, B., Lin, Q., Li, J. Z., Liu, F. A., Zeng, X. C., & Chen, H. (2008). Metal-promoted hydrolysis of bis(p-nitrophenyl)phosphate by trivalent manganese complexes with Schiff base ligands in Gemini micellar solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 315, 103–109. DOI:10.1016/j.colsurfa.2007.07.018. http://dx.doi.org/10.1016/j.colsurfa.2007.07.01810.1016/j.colsurfa.2007.07.018Search in Google Scholar
[10] Jones, D. R., Lindoy, L. F., & Sargeson, A. M. (1983). Hydrolysis of phosphate esters bound to cobalt(III). Kinetics and mechanism of intramolecular attack of hydroxide on coordinated 4-nitrophenyl phosphate. Journal of the American Chemical Society, 105, 7327–7336. DOI: 10.1021/ja00363a021. http://dx.doi.org/10.1021/ja00363a02110.1021/ja00363a021Search in Google Scholar
[11] Jurek, P. E., Jurek, A. M., & Martell, A. E. (2000). Phosphate diester hydrolysis by mono- and dinuclear lanthanum complexes with an unusual third-order dependence. Inorganic Chemistry, 39, 1016–1020. DOI: 10.1021/ic9906961. http://dx.doi.org/10.1021/ic990696110.1021/ic9906961Search in Google Scholar PubMed
[12] Katada, H., Seino, H., Mizobe, Y., Sumaoka, J., & Komiyama, M. (2008). Crystal structure of Ce((IV)/dipicolinate complex as catalyst for DNA hydrolysis. Journal of Biological Inorganic Chemistry, 13, 249–255. DOI: 10.1007/s00775-007-0315-x. http://dx.doi.org/10.1007/s00775-007-0315-x10.1007/s00775-007-0315-xSearch in Google Scholar
[13] Komiyama, M., Takeda, N., & Shigekawa, H. (1999). Hydrolysis of DNA and RNA by lanthanide ions: mechanistic studies leading to new applications. Chemical Communications, 1999, 1443–1451. DOI: 10.1039/a901621j. http://dx.doi.org/10.1039/a901621j10.1039/a901621jSearch in Google Scholar
[14] Kuchma, M. H., Komanski, C. B., Colon, J., Teblum, A., Masunov, A. E., Alvarado, B., Babu, S., Seal, S., Summy, J., & Baker, C. H. (2010). Phosphate ester hydrolysis of biologically relevant molecules by cerium oxide nanoparticles. Nanomedicine: Nanotechnology, Biology and Medicine, 6, 738–744. DOI:10.1016/j.nano.2010.05.004. http://dx.doi.org/10.1016/j.nano.2010.05.00410.1016/j.nano.2010.05.004Search in Google Scholar
[15] Li, J. Z., Xie, J. Q., Li, S. X., Zeng, W., Zeng, X. C., & Qin, S. Y (2005). Study of the BNPP hydrolysis catalyzed by the Schiff base magnesium(III) complexes bearing polyether side chains in the micelle solution. Acta Chimica Sinica, 63, 114–120. Search in Google Scholar
[16] Lombardo, V., Bonomi, R., Sissi, C., & Mancin, F. (2010). Phosphate diesters and DNA hydrolysis by dinuclear Zn(II) complexes featuring a disulfide bridge and H-bond donors. Tetrahedron, 66, 2189–2195. DOI:10.1016/j.tet.2010.01.050. http://dx.doi.org/10.1016/j.tet.2010.01.05010.1016/j.tet.2010.01.050Search in Google Scholar
[17] Luedtke, N. W., & Schepartz, A. (2005). Lanthanide-mediated phosphoester hydrolysis and phosphate elimination from phosphopeptides. Chemical Communications, 2005, 5426–5428. DOI: 10.1039/b510123a. http://dx.doi.org/10.1039/b510123a10.1039/b510123aSearch in Google Scholar
[18] Maldonado, A. L., & Yatsimirsky, A. K. (2005). Kinetics of phosphodiester cleavage by differently generated cerium(IV) hydroxo species in neutral solutions. Organic & Biomolecular Chemistry, 3, 2859–2867. DOI: 10.1039/b506170a. http://dx.doi.org/10.1039/b506170a10.1039/b506170aSearch in Google Scholar
[19] Mancin, F., & Tecilla, P. N. (2007). Zinc(II) complexes as hydrolytic catalysts of phosphate diester cleavage: from model substrates to nucleic acids. New Journal of Chemistry, 31, 800–817. DOI: 10.1039/b703556j. http://dx.doi.org/10.1039/b703556j10.1039/b703556jSearch in Google Scholar
[20] Patel, M. N., Patel, S. H., & Pansuriya, P. B. (2011). DNA binding and cleavage by dinuclear nickel(II) complexes with neutral bidentate ligands and ciprofloxacin. Medicinal Chemistry Research, 20, 1371–1384. DOI: 10.1007/s00044-010-9486-z. http://dx.doi.org/10.1007/s00044-010-9486-z10.1007/s00044-010-9486-zSearch in Google Scholar
[21] Rammo, J., Hettich, R., Roigk, A., & Schneider, H. J. (1996). Catalysis of DNA cleavage by lanthanide complexes with nucleophilic or intercalating ligands and their kinetic characterization. Chemical Communications, 1996, 105–107. DOI: 10.1039/cc9960000105. http://dx.doi.org/10.1039/cc996000010510.1039/cc9960000105Search in Google Scholar
[22] Rossi, L. M., Neves, A., Hörner, R., Terenzi, H., Szpoganicz, B., & Sugai, J. (2002). Hydrolytic activity of a dinuclear copper(II,II) complex in phosphate diester and DNA cleavage. Inorganica Chimica Acta, 337, 366–370. DOI: 10.1016/s0020-1693(02)01111-8. http://dx.doi.org/10.1016/S0020-1693(02)01111-810.1016/S0020-1693(02)01111-8Search in Google Scholar
[23] Taşcioğlu, S. (1996). Micellar solutions as reaction media. Tetrahedron, 52, 11113–11152. DOI: 10.1016/0040-4020(96)00669-2. http://dx.doi.org/10.1016/0040-4020(96)00669-210.1016/0040-4020(96)00669-2Search in Google Scholar
[24] Tjioe, L., Joshi, T., Forsyth, C. M., Moubaraki, B., Murray, K. S., Brugger, J., Graham, B., & Spiccia, L. (2012). Phosphodiester cleavage properties of copper(II) complexes of 1,4,7-triazacyclononane ligands bearing single alkyl guanidine pendants. Inorganic Chemistry, 51, 939–953. DOI:10.1021/ic2019814. http://dx.doi.org/10.1021/ic201981410.1021/ic2019814Search in Google Scholar PubMed
[25] Tonde, S. S., Kumbhar, A. S., Padhye, S. B., & Butcher, R. J. (2006). Self-activating nuclease activity of copper (II) complexes of hydroxyl-rich ligands. Journal of Inorganic Biochemistry, 100, 51–57. DOI:10.1016/j.jinorgbio.2005.09.014. http://dx.doi.org/10.1016/j.jinorgbio.2005.09.01410.1016/j.jinorgbio.2005.09.014Search in Google Scholar PubMed
[26] Wang, H. T., Hu, T. T., Zhang, Q. L., Liu, J. H., Ren, X. Z., Li, C. H., Wang, F., & Zhang, P. X. (2008). Synthesis, DNA-binding and luminescent properties of polypyridyl ruthenium(II) complex. Acta Chimica Sinica, 66, 1565–1571. Search in Google Scholar
[27] Westheimer, F. H. (1987). Why nature chose phosphates. Science, 235, 1173–1178. DOI: 10.1126/science.2434996. http://dx.doi.org/10.1126/science.243499610.1126/science.2434996Search in Google Scholar PubMed
[28] Xiang, Y., Jiang, B. Y., Zeng, X. C., & Xie, J. Q. (2002). Metallomicellar catalysis: Catalytic cleavage of p-nitrophenyl picolinate by Cu2+ complex of 4-chloride-2,6-bis(N-hydroxyethylaminomethyl)-benzophenol in micellar solution. Journal of Colloid and Interface Science, 247, 366–371. DOI:10.1006/jcis.2001.8069. http://dx.doi.org/10.1006/jcis.2001.806910.1006/jcis.2001.8069Search in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects