Startseite Effect of lentil and bean flours on rheological and baking properties of wheat dough
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Effect of lentil and bean flours on rheological and baking properties of wheat dough

  • Zlatica Kohajdová EMAIL logo , Jolana Karovičová und Michal Magala
Veröffentlicht/Copyright: 9. Januar 2013
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The potential of legume flours (lentil and bean) in bakery applications was investigated. The study indicated that legume flours were characterised by high protein (27.30–27.35 mass %) and total dietary fibre (14.91–21.52 mass %), relatively high water holding capacity (4.71–5.42 g g−1), and good emulsifying properties (emulsifying capacity: 32.73–46.96 cm3 per 100 cm3 and emulsion stability: 60.52–90.90 cm3 per 100 cm3). Fine wheat flour was partially substituted with 10 mass %, 20 mass %, and 30 mass % levels of lentil and bean flours in order to study their farinographic characteristics and baking behaviour. The addition of legume flours increased water absorption capacity (from 58.50 mass % to 74.90 mass %) and dough development time (from 3.50 min to 5.50 min), whereas dough stability was reduced (from 6.67 min to 2.30 min). The presence of legume flours in dough negatively affected the physical parameters of baked rolls and resulted in the reduction in volume, specific volume, and cambering. Sensory evaluation showed that the most acceptable baked rolls were obtained when the wheat-legume blend flour containing 10 mass % of legume flour was applied. Higher levels of legume flours in the products adversely affected the shape, crust colour, crumb elasticity, and hardness of the final products.

[1] Abou Arab, E. A., Helmy, I. M. F., & Bareh, G. F. (2010). Nutritional evaluation of functional properties of chickpea (Cicer arietinum L.) flour and the improvement of spaghetti produced from its. Journal of American Science, 6, 1055–1072. Suche in Google Scholar

[2] Abou-Zaid, A. A. M., Ramadan, M. T., & Al-Asklany, S. A. (2011). Utilisation of faba bean and cowpea flours in gluten free cake production. Australian Journal of Basic and Applied Sciences, 5, 2665–2672. Suche in Google Scholar

[3] Adebowale, Y. A., Adeyemi, I. A., & Oshodi, A. A. (2005). Functional and physicochemical properties of flours of six Mucuna species. African Journal of Biotechnology, 4, 1461–1468. Suche in Google Scholar

[4] Aguilera, Y., Estrella, I., Benitez, V., Esteban, R. M., & Martín-Cabrejas, M. A. (2011). Bioactive phenolic compounds and functional properties of dehydrated bean flours. Food Research International, 44, 774–780. DOI: 10.1016/j.foodres.2011.01.004. http://dx.doi.org/10.1016/j.foodres.2011.01.00410.1016/j.foodres.2011.01.004Suche in Google Scholar

[5] Akhtar, S., Anjum, F. M., Rehman, S. U., & Sheikh, M. A. (2009). Effect of mineral fortification on freological properties of whole wheat flour. Journal of Texture Studies, 40, 51–65. DOI: 10.1111/j.1745-4603.2008.00169.x. http://dx.doi.org/10.1111/j.1745-4603.2008.00169.x10.1111/j.1745-4603.2008.00169.xSuche in Google Scholar

[6] Angioloni, A., & Collar, C. (2012). High legume-wheat matrices: an alternative to promote bread nutritional value meeting dough viscoelastic restrictions. European Food Research and Technology, 234, 273–284. DOI: 10.1007/s00217-011-1637-z. http://dx.doi.org/10.1007/s00217-011-1637-z10.1007/s00217-011-1637-zSuche in Google Scholar

[7] Appiah, F., Asibuo, J. Y., & Kumah, P. (2011). Physicochemical and functional properties of bean flours of three cowpea (Vigna unguiculata L. Walp) varieties in Ghana. African Journal of Food Science, 5, 100–104. Suche in Google Scholar

[8] Ashraf, S., Saeed, S. M. G., Saydeed, S. A., & Ali, R. (2012). Impact of microwave treatment on the functionality of cereals and legumes. International Journal of Agriculture and Biology, 14, 356–370. Suche in Google Scholar

[9] Bahnassey, Y., & Khan, K. (1986). Fortification of spaghetti with edible legumes. II. Rheological, processing, and quality evaluation studies. Cereal Chemistry, 63, 216–219. Suche in Google Scholar

[10] Bojňanská, T., Frančáková, H., Líšková, M., & Tokár, M. (2012). Legumes — the alternative raw materials for bread production. Journal of Microbiology, Biotechnology and Food Sciences, 1, 876–886. Suche in Google Scholar

[11] Bose, D., & Shams-Ud-Din, M. (2010). The effect of chickpea (Cicer arietinim) husk on the properties of cracker biscuits. Journal of Bangladesh Agricultural University, 8, 147–152. DOI: 10.3329/jbau.v8i1.6412. 10.3329/jbau.v8i1.6412Suche in Google Scholar

[12] Boye, J. I., Aksay, S., Roufik, S., Ribéreau, S., Mondor, M., Farnworth, E., & Rajamohamed, S. H. (2010a). Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Research International, 43, 537–546. DOI: 10.1016/j.foodres.2009.07.021. http://dx.doi.org/10.1016/j.foodres.2009.07.02110.1016/j.foodres.2009.07.021Suche in Google Scholar

[13] Boye, J., Zare, F., & Pletch, A. (2010b). Pulse proteins: Processing, characterisation, functional properties and applications in food and feed. Food Research International, 43, 414–431. DOI: 10.1016/j.foodres.2009.09.003. http://dx.doi.org/10.1016/j.foodres.2009.09.00310.1016/j.foodres.2009.09.003Suche in Google Scholar

[14] Butt, M. S., & Batool, R. (2010). Nutritional and functional properties of some promising legume protein isolates. Pakistan Journal of Nutrition, 9, 373–379. http://dx.doi.org/10.3923/pjn.2010.373.37910.3923/pjn.2010.373.379Suche in Google Scholar

[15] Chau, C. F., & Cheung, P. C. K. (1998). Functional properties of flours prepared from three Chinese indigenous legume seeds. Food Chemistry, 61, 429–433. DOI: 10.1016/s0308-8146(97)00091-5. http://dx.doi.org/10.1016/S0308-8146(97)00091-510.1016/S0308-8146(97)00091-5Suche in Google Scholar

[16] D’Appolonia, B. L. (1977). Rheological and baking studies of legume-wheat flour blends. Cereal Chemistry, 54, 53–63. Suche in Google Scholar

[17] Des-Marchais, L. P., Foisy, M., Mercier, S., Villeneuve, S., & Mondor, M. (2011). Bread-making potential of pea protein isolate produced by a novel ultrafiltration/diafiltration process. Procedia Food Science, 1, 1425–1430. DOI: 10.1016/j.profoo.2011.09.211. http://dx.doi.org/10.1016/j.profoo.2011.09.21110.1016/j.profoo.2011.09.211Suche in Google Scholar

[18] Dhinda, F., Lakshmi, J. A., Prakash, J., & Dasappa, I. (2012). Effect of ingredients on rheological, nutritional and quality characteristics of high protein, high fibre and low carbo hydrate bread. Food Bioprocess Technology, 5, 2998–3006. DOI: 10.1007/s11947-011-0752-y. http://dx.doi.org/10.1007/s11947-011-0752-y10.1007/s11947-011-0752-ySuche in Google Scholar

[19] Eissa, A., Hussein, A. S., & Mostafa, B. E. (2007). Rheological properties and quality evaluation of Egyptian balady bread and biscuits supplemented with flours of ungerminated and germinated legume seeds or mushroom. Polish Journal of Food and Nutrition Sciences, 57, 487–496. Suche in Google Scholar

[20] Eltayeb, A. R. S. M., Ali, A. O., Abou-Arab, A. A., & Abu-Salem, F. M. (2011). Chemical composition and functional properties of flour and protein isolate extracted from Bambara groundnut (Vigna subterranean). African Journal of Food Sciences, 5, 82–90. Suche in Google Scholar

[21] Fenn, D., Lukow, O. M., Humphreys, G., Fields, P. G., & Boye, J. I. (2010). Wheat-legume composite flour quality. International Journal of Food Properties, 13, 381–393. DOI: 10.1080/10942910802571729. http://dx.doi.org/10.1080/1094291080257172910.1080/10942910802571729Suche in Google Scholar

[22] GaŽar, R., & Bojňanská, T. (2010). Changes in dough consistency, dough development time and dough stability after buckwheat, oat, lentil and chickpea flour addition. Potravinárstvo, 4(special issue), 33–38. Suche in Google Scholar

[23] Giménez, M. A., Drago, S. R., De Greef, D., Gonzalez, R. J., Lobo, M. O., & Samman, N. C. (2012). Rheological, functional and nutritional properties of wheat/broad bean (Vicia faba) flour blend for pasta formulation. Food Chemistry, 134, 200–206. DOI: 10.1016/j.foodchem.2012.02.093. http://dx.doi.org/10.1016/j.foodchem.2012.02.09310.1016/j.foodchem.2012.02.093Suche in Google Scholar

[24] Gómez, M., Oliete, B., Rosell, C. M., Pando, V., Fernández, E. (2008). Studies on cake quality made from wheat-chickpea flour blends. LWT — Food Science and Technology, 41, 1701–1709. DOI: 10.1016/j.lwt.2007.11.024. http://dx.doi.org/10.1016/j.lwt.2007.11.02410.1016/j.lwt.2007.11.024Suche in Google Scholar

[25] Hallén, E., Ibanoğlu, S., & Ainsworth, P. (2004). Effect of fermented/germinated cowpea flour addition on the rheological and baking properties of wheat flour. Journal of Food Engineering, 63, 177–184. DOI: 10.1016/s0260-8774(03)00298-x. http://dx.doi.org/10.1016/S0260-8774(03)00298-X10.1016/S0260-8774(03)00298-XSuche in Google Scholar

[26] Han, J. J., Janz, J. A. M., & Gerlat, M. (2010). Development of gluten-free cracker snacks using pulse flours and fractions. Food Research International, 43, 627–633. DOI: 10.1016/j.foodres.2009.07.015. http://dx.doi.org/10.1016/j.foodres.2009.07.01510.1016/j.foodres.2009.07.015Suche in Google Scholar

[27] Hefnawy, T. M. H., El-Shourbagy, G. A., & Ramadan, M. F. (2012). Impact of adding chickpea (Cicer arietinum L.) flour to wheat flour on the rheological properties of toast bread. International Food Research Journal, 19, 521–525. Suche in Google Scholar

[28] Hemeda, H. M., & Mohamed, E. F. (2012). Functional attribute of chickpea and defatted soybean flour blends on quality characteristics of shortening cake. European Journal of Applied Sciences, 2, 44–50. Suche in Google Scholar

[29] Hozová, B., Jančovičová, J., Dodok, L., Buchtová, V., & Staruch, L. (2002). Use of transglutaminase for improvement of quality of pastry produced by frozen-dough technology. Czech Journal of Food Science, 20, 215–222. 10.17221/3534-CJFSSuche in Google Scholar

[30] Hrušková, M., & Novotná, D. (2003). Effect of ascorbic acid on the rheological properties of wheat fermented dough. Czech Journal of Food Science, 21, 137–144. 10.17221/3490-CJFSSuche in Google Scholar

[31] Kadam, M. L., Salve, R. V., Mehrajfatema, Z. M., & More, S. G. (2012). Development and evaluation of composite flour for Missi roti/chapatti. Food Process & Technology, 3, 1000134. DOI: 10.4172/2157-7110.1000134. 10.4172/2157-7110.1000134Suche in Google Scholar

[32] Kamaljit, K., Baljeet, S., & Amarjeet, K. (2010). Preparation of bakery products by incorporating pea flour as a functional ingredient. American Journal of Food Technology, 5, 130–135. DOI: 10.3923/ajft.2010.130.135. http://dx.doi.org/10.3923/ajft.2010.130.13510.3923/ajft.2010.130.135Suche in Google Scholar

[33] Kaushal, P., Kumar, V., & Sharma, H. K. (2012). Comparative study of physicochemical, functional, antinutritional and pasting properties of taro (Colocasia esculenta), rice (Oryza sativa) flour, pigeonpea (Cajanus cajan) flour and their blends. LWT — Food Science and Technology, 48, 59–68. DOI: 10.1016/j.lwt.2012.02.028. http://dx.doi.org/10.1016/j.lwt.2012.02.02810.1016/j.lwt.2012.02.028Suche in Google Scholar

[34] Kohajdová, Z., & Karovičová, J. (2007). Effect incorporation of spelt flour on the dough properties and wheat bread quality. Żywność, 2007(4), 36–45. Suche in Google Scholar

[35] Kohajdová, Z., & Karovičová, J. (2008). Influence of hydrocolloids on quality of baked goods. Acta Scientiarum Polonorum: Technologia Alimentaria, 7(2), 43–49. Suche in Google Scholar

[36] Kohajdová, Z., Karovičová, J., & Šimková, S. (2009). Quality assessment of spelt bakery products with addition of ascorbic acid. Acta Fytotechnica et Zootechnica, 12(special issue), 291–296. Suche in Google Scholar

[37] Kohajdová, Z., & Karovičová, J. (2010). Impact of potassium iodate on the quality of wheat-spelt baked goods. Acta Scientiarum Polonorum: Technologia Alimentaria, 9, 443–450. Suche in Google Scholar

[38] Kohajdová, Z., Karovičová, J., Jurasová, M., & Kukurová, K. (2011a). Application of citrus dietary fibre preparations in biscuit preparation. Journal of Food and Nutrition Research, 50(3), 182–190. Suche in Google Scholar

[39] Kohajdová, Z., Karovičová, J., & Magala, M. (2011b). Utilisation of chickpea flour for cracker production. Acta Chimica Slovaca, 4(2), 98–107. Suche in Google Scholar

[40] Ma, Z., Boye, J. I., Simpson, B. K., Prasher, S. O., Monpetit, D., & Malcolmson, L. (2011). Thermal processing effects on the functional properties and microstructure of lentil, chickpea, and pea flours. Food Research International, 44, 2534–2544. DOI: 10.1016/j.foodres.2010.12.017. http://dx.doi.org/10.1016/j.foodres.2010.12.01710.1016/j.foodres.2010.12.017Suche in Google Scholar

[41] Maninder, K., Sandhu, K. S., & Singh, N. (2007). Comparative study of the functional, thermal and pasting properties of flours from different field pea (Pisum sativum L.) and pigeon pea (Cajanus cajan L.) cultivars. Food Chemistry, 104, 259–267. DOI: 10.1016/j.foodchem.2006.11.037. http://dx.doi.org/10.1016/j.foodchem.2006.11.03710.1016/j.foodchem.2006.11.037Suche in Google Scholar

[42] Miś, A., Grundas, S., Dziki, D., & Laskowski, J. (2012). Use of farinograph measurements for predicting extensograph traits of bread dough enriched with carob fibre and oat wholemeal. Journal of Food Engineering, 108, 1–12. DOI: 10.1016/j.jfoodeng.2011.08.007. http://dx.doi.org/10.1016/j.jfoodeng.2011.08.00710.1016/j.jfoodeng.2011.08.007Suche in Google Scholar

[43] Mohammed, I., Ahmed, A. R., & Senge, B. (2012). Dough rheology and bread quality of wheat-chickpea flour blends. Industrial Crops and Products, 36, 196–202. DOI: 10.1016/j.indcrop.2011.09.006. http://dx.doi.org/10.1016/j.indcrop.2011.09.00610.1016/j.indcrop.2011.09.006Suche in Google Scholar

[44] Mortuza, G., & Tzen, J. T. C. (2009). Physicochemical and functional properties of ten cultivars of seem (Lablab purpureus L.), an underexploited bean in Bangladesh. Journal of the Science and Agriculture, 89, 1277–1283. DOI: 10.1002/jsfa.3583. 10.1002/jsfa.3583Suche in Google Scholar

[45] Olalekan, A. J., & Bosede, B. F. (2010). Comparative study on chemical composition and functional properties of three Nigerian legumes (Jack beans, Pigmeon pea and Cowpea). Journal of Emerging Trends in Engineering and Applied Sciences, 1, 89–95. Suche in Google Scholar

[46] Qian, J. Y., & Ding, X. L. (1996). Effect of twin-screw extrusion on the functional properties of soy fiber. Journal of the Science of Food and Agriculture, 71, 64–68. DOI: 10.1002/(SICI)1097-0010(199605)71:1〈64::AID-JSFA536〉3.0.CO;2-A. http://dx.doi.org/10.1002/(SICI)1097-0010(199605)71:1<64::AID-JSFA536>3.0.CO;2-A10.1002/(SICI)1097-0010(199605)71:1<64::AID-JSFA536>3.0.CO;2-ASuche in Google Scholar

[47] Raghavendra, S. N., Rastogi, N. K., Raghavarao, K. S. M. S., & Tharanathan, R. N. (2004). Dietary fiber from coconut residue: effects of different treatments and particle size on the hydration properties. European Food Research and Technology, 218, 563–567. DOI: 10.1007/s00217-004-0889-2. http://dx.doi.org/10.1007/s00217-004-0889-210.1007/s00217-004-0889-2Suche in Google Scholar

[48] Raghavendra, S. N., Ramachandra Swamy, S. R., Rastogi, N. K., Raghavarao, K. S. M. S., Kumar, S., & Tharanathan, R. N. (2006). Grinding characteristics and hydration properties of coconut residue: A source of dietary fiber. Journal of Food Engineering, 72, 281–286. DOI: 10.1016/j.jfoodeng.2004.12.008. http://dx.doi.org/10.1016/j.jfoodeng.2004.12.00810.1016/j.jfoodeng.2004.12.008Suche in Google Scholar

[49] Rosell, C. M., Rojas, J. A., & Benedito de Barber, C. (2001). Influence of hydrocolloids on dough rheology and bread quality. Food Hydrocolloids, 15, 75–81. DOI: 10.1016/s0268-005x(00)00054-0. http://dx.doi.org/10.1016/S0268-005X(00)00054-010.1016/S0268-005X(00)00054-0Suche in Google Scholar

[50] Rysová, J., Ouhrabková, J., Gabrovská, D., Paulíčková, I., Winterová, R., Vymyslicky, T., Prokeš, J., & Hutař, M. (2010). Food with addition of little-known legume varieties. Agronomy Research, 8, 339–344. Suche in Google Scholar

[51] Sadowska, J., Błaszczak, W., Fornnal, J., Vidal-Valverde, C., & Frias, J. (2003). Changes of wheat dough and bread quality and structure as a result of germinated pea flour addition. European Food Research and Technology, 216, 46–50. DOI: 10.1007/s00217-002-0617-8. 10.1007/s00217-002-0617-8Suche in Google Scholar

[52] Shahzadi, N., Butt, M. S., Ur Rehman, S., & Sharif, K. (2005). Rheological and baking performance of composite flours. International Journal of Agriculture & Biology, 7, 100–104. Suche in Google Scholar

[53] Siddiq, M., Ravi, R., Harte, J. B., & Dolan, K. D. (2010). Physical and functional characteristics of selected dry bean (Phaseolus vulgaris L.) flours. LWT — Food Science and Technology, 43, 232–237. DOI: 10.1016/j.lwt.2009.07.009. http://dx.doi.org/10.1016/j.lwt.2009.07.00910.1016/j.lwt.2009.07.009Suche in Google Scholar

[54] Špačková, Z., Příhoda, J., & Rovnaníková, S. (2001). Simultaneous enrichment of wheat flour with iodine and improvement of rheological properties of wheat dough. Czech Journal of Food Science, 19, 219–223. 10.17221/6611-CJFSSuche in Google Scholar

[55] Sreerama, Y. N., Sashikala, V. B., Pratape, V. M., & Singh, V. (2012). Nutrients and antinutrients in cowpea and horse gram flours in comparison to chickpea flour: Evaluation of their flour functionality. Food Chemistry, 131, 462–468. DOI: 10.1016/j.foodchem.2011.09.008. http://dx.doi.org/10.1016/j.foodchem.2011.09.00810.1016/j.foodchem.2011.09.008Suche in Google Scholar

[56] Sudha, M. L., Vetrimani, R., & Leelavathi, K. (2007). Influence of fibre from different cereals on the rheological characteristics of wheat flour dough and on biscuit quality. Food Chemistry, 100, 1365–1370. DOI: 10.1016/j.foodchem.2005.12.013. http://dx.doi.org/10.1016/j.foodchem.2005.12.01310.1016/j.foodchem.2005.12.013Suche in Google Scholar

[57] Sun-Waterhouse, D., Teoh, A., Massarotto, C., Wibisono, R., & Wadhwa, S. (2010). Comparative analysis of fruit-based functional snack bars. Food Chemistry, 119, 1369–1379. DOI: 10.1016/j.foodchem.2009.09.016. http://dx.doi.org/10.1016/j.foodchem.2009.09.01610.1016/j.foodchem.2009.09.016Suche in Google Scholar

[58] Thushan Sanjeewa, W. T., Wanasundara, J. P. D., Pietrasik, Z., & Shand, P. J. (2010). Characterisation of chickpea (Cicer arietinum L.) flours and application in low-fat pork bologna as a model system. Food Research International, 43, 617–626. DOI: 10.1016/j.foodres.2009.07.024. http://dx.doi.org/10.1016/j.foodres.2009.07.02410.1016/j.foodres.2009.07.024Suche in Google Scholar

[59] Tiwari, B. K., Brennan, C. S., Jaganmohan, R., Surabi, A., & Alagusundaram, K. (2011). Utilisation of pigeon pea (Cajanus cajan L) byproducts in biscuit manufacture. LWT — Food Science and Technology, 44, 1533–1537. DOI: 10.1016/j.lwt.2011.01.018. http://dx.doi.org/10.1016/j.lwt.2011.01.01810.1016/j.lwt.2011.01.018Suche in Google Scholar

[60] Viuda-Martos, M., Ruiz-Naavajas, Y., Martin-Sánchez, A., Sánchez-Zapata, E., Fernández-López, J., Sendra, E., Sayas-Barberá, E., Navarro, C., & Pérez-álvarez, J. A. (2011). Chemical, physico-chemical and functional properties of pomegrate (Punica granatum L.) bagasses powder co-product. Journal of Food Engineering, 110, 220–224. DOI: 10.1016/j.jfoodeng.2011.05.029. http://dx.doi.org/10.1016/j.jfoodeng.2011.05.02910.1016/j.jfoodeng.2011.05.029Suche in Google Scholar

[61] Wang, N., & Toews, R. (2011). Certain physicochemical and functional properties of fibre fractions from pulses. Food Research International, 44, 2515–2523. DOI: 10.1016/j.foodres.2011.03.012. http://dx.doi.org/10.1016/j.foodres.2011.03.01210.1016/j.foodres.2011.03.012Suche in Google Scholar

[62] Zhu, K. X., Huang, S., Peng, W., Qian, H. F., & Zhou, H. M. (2010). Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fibre. Food Research International, 43, 943–948. DOI: 10.1016/j.foodres.2010.01.005. http://dx.doi.org/10.1016/j.foodres.2010.01.00510.1016/j.foodres.2010.01.005Suche in Google Scholar

Published Online: 2013-1-9
Published in Print: 2013-4-1

© 2012 Institute of Chemistry, Slovak Academy of Sciences

Artikel in diesem Heft

  1. Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
  2. Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
  3. Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
  4. Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
  5. Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
  6. Effect of lentil and bean flours on rheological and baking properties of wheat dough
  7. Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
  8. Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
  9. Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
  10. Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
  11. Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
  12. An efficient method for the preparation of benzyl γ-ketohexanoates
  13. Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
  14. Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Heruntergeladen am 27.11.2025 von https://www.degruyterbrill.com/document/doi/10.2478/s11696-012-0295-3/html
Button zum nach oben scrollen