Abstract
An efficient method has been developed for the synthesis of a novel β-keto ester-containing pyranoquinoline compound, i.e., ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate. The method entails a two-step synthesis. The first step involves the Williamson-type reaction of ethyl 2-bromomethyl-3-quinoline-3-carboxylate with ethyl hydroxyacetate in anhydrous benzene to afford the intermediate ethyl 2-[(2-ethoxy-2-oxoethoxy)methyl]quinoline-3-carboxylate. The second step includes the Dieckmann condensation reaction of the resulting intermediate in the presence of sodium ethoxide in anhydrous toluene to afford the desired pyranoquinoline containing β-keto ester moiety. Keto-enol tautomerism of the compound thus obtained was investigated by spectroscopic methods.
[1] Adepu, R., Rambabu, D., Prasad, B., Meda, C. L. T., Kandale, A., Krishna, G. R., Reddy, C. M., Chennuru, L. N., Parsa, K. V. L., & Pal, M. (2012). Novel thieno[2,3-d]pyrimidines: their design, synthesis, crystal structure analysis and pharmacological evaluation. Organic & Biomolecular Chemistry, 10, 5554–5569. DOI: 10.1039/c2ob25420d. http://dx.doi.org/10.1039/c2ob25420d10.1039/c2ob25420dSearch in Google Scholar
[2] Allegretti, P. E., Schiavoni, M. M., Di Loreto, H. E., Furlong, J. J. P., & Della Védova, C. O. (2001). Separation of keto-enol tautomers in β-ketoesters: a gas chromatography-mass spectrometric study. Journal of Molecular Structure, 560, 327–335. DOI: 10.1016/s0022-2860(00)00773-0. http://dx.doi.org/10.1016/S0022-2860(00)00773-010.1016/S0022-2860(00)00773-0Search in Google Scholar
[3] Balamurugan, K., Jeyachandran, V., Perumal, S., Manjashetty, T. H., Yogeeswari, P., & Sriram, D. (2010). A microwaveassisted, facile, regioselective Friedländer synthesis and antitubercular evaluation of 2,9-diaryl-2,3-dihydrothieno-[3,2-b]quinolines. European Journal of Medicinal Chemistry, 45, 682–688. DOI: 10.1016/j.ejmech.2009.11.011. http://dx.doi.org/10.1016/j.ejmech.2009.11.01110.1016/j.ejmech.2009.11.011Search in Google Scholar
[4] Bandgar, B. P., Pandit, S. S., & Sadavarte, V. S. (2001). Montmorillonite K-10 catalyzed synthesis of β-keto esters: condensation of ethyl diazoacetate with aldehydes under mild conditions. Green Chemistry, 3, 247–249. DOI: 10.1039/b104116a. http://dx.doi.org/10.1039/b104116a10.1039/b104116aSearch in Google Scholar
[5] Chandra, A., Singh, B., Khanna, R. S., & Singh, R. M. (2009). Copper-free palladium-catalyzed Sonogashira coupling-annulation: Efficient one-pot synthesis of functionalized pyrano [4,3-b]quinolines from 2-chloro-3-formylquinolines. The Journal of Organic Chemistry, 74, 5664–5666. DOI: 10.1021/jo900606j. http://dx.doi.org/10.1021/jo900606j10.1021/jo900606jSearch in Google Scholar
[6] Chen, I. S., Tsai, I. W., Teng, C. M., Chen, J. J., Chang, Y. L., Ko, F. N., Lu, M. C., & Pezzuto, J. M. (1997). Pyranoquinoline alkaloids from Zanthoxylum simulans. Phytochemistry, 46, 525–529. DOI: 10.1016/s0031-9422(97)00280-x. http://dx.doi.org/10.1016/S0031-9422(97)00280-X10.1016/S0031-9422(97)00280-XSearch in Google Scholar
[7] Cimanga, K., De Bruyne, T., Pieters, L., & Vlietinck, A. J. (1997). In vitro and in vivo antiplasmodial activity of cryptolepine and related alkaloids from Cryptolepis sanguinolenta. Journal of Natural Products, 60, 688–691. DOI: 10.1021/np9605246. http://dx.doi.org/10.1021/np960524610.1021/np9605246Search in Google Scholar PubMed
[8] Cui, H. F., Dong, K. Y., Nie, J., Zheng, Y., & Ma, J. A. (2010). Lewis acid-catalyzed one-pot sequential reaction for the synthesis of α-halogenated β-keto esters. Tetrahedron Letters, 51, 2374–2377. DOI: 10.1016/j.tetlet.2010.02.158. http://dx.doi.org/10.1016/j.tetlet.2010.02.15810.1016/j.tetlet.2010.02.158Search in Google Scholar
[9] Cui, L. Q., Dong, Z. L., Liu, K., & Zhang, C. (2011). Design, synthesis, structure, and dehydrogenation reactivity of a water-soluble o-iodoxybenzoic acid derivative bearing a trimethylammonium group. Organic Letters, 13, 6488–6491. DOI: 10.1021/ol202777h. http://dx.doi.org/10.1021/ol202777h10.1021/ol202777hSearch in Google Scholar PubMed
[10] Dolle, R. E., & Nelson, K. H., Jr. (1999). Comprehensive survey of combinatorial library synthesis: 1998. Journal of Combinatorial Chemistry, 1, 235–282. DOI: 10.1021/cc9900192. http://dx.doi.org/10.1021/cc990019210.1021/cc9900192Search in Google Scholar PubMed
[11] Dudley, M. E., Morshed, M. M., Brennan, C. L., Islam, M. S., Ahmad, M. S., Atuu, M. R., Branstetter, B., & Hossain, M. M. (2004). Acid-catalyzed reactions of aromatic aldehydes with ethyl diazoacetate: An investigation on the synthesis of 3-hydroxy-2-arylacrylic acid ethyl esters. The Journal of Organic Chemistry, 69, 7599–7608. DOI: 10.1021/jo0489418. http://dx.doi.org/10.1021/jo048941810.1021/jo0489418Search in Google Scholar
[12] Faber, K., Stuckler, H., & Kappe, T. (1984). Non-steroidal antiinflammatory agents. 1. Synthesis of 4-hydroxy-2-oxo-1,2-dihydroquinolin-3-yl alkanoic acids by the Wittig reaction of quinisatines. Journal of Heterocyclic Chemistry, 21, 1177–1181. DOI: 10.1002/jhet.5570210450. http://dx.doi.org/10.1002/jhet.557021045010.1002/jhet.5570210450Search in Google Scholar
[13] Gao, W., Zhang, C., Li, Y., & Jiang, Y. (2009). Effective preparation and fluorescent properties of novel naphthooxepinoquinolinones and naphthoacridinediones. Chinese Journal of Organic Chemistry, 29, 1423–1428. Search in Google Scholar
[14] Gao, W., Zhang, C., & Li, Y. (2010). A novel one-pot three-step synthesis of 2-(1-benzofuran-2-yl)quinoline-3-carboxylic acid derivatives. Journal of the Brazilian Chemical Society, 21, 806–812. DOI: 10.1590/s0103-50532010000500007. http://dx.doi.org/10.1590/S0103-5053201000050000710.1590/S0103-50532010000500007Search in Google Scholar
[15] Gao, W., Liu, J., Jiang, Y., & Li, Y. (2011). First synthesis of 2-(benzofuran-2-yl)-6,7-methylene dioxyquinoline-3-carboxylic acid derivatives. Beilstein Journal of Organic Chemistry, 7, 210–217. DOI: 10.3762/bjoc.7.28. http://dx.doi.org/10.3762/bjoc.7.2810.3762/bjoc.7.28Search in Google Scholar
[16] Gao, W., Jiang, Y., Li, Y., Li, F., & Yan, Y. (2012). A novel and facile synthesis of 2-(benzofuran-2-yl)benzo[h]quinoline-3-carboxylic acid derivatives. Chinese Journal of Chemistry, 30, 822–826. DOI: 10.1002/cjoc.201100389. http://dx.doi.org/10.1002/cjoc.20110038910.1002/cjoc.201100389Search in Google Scholar
[17] Ghosh, S., Nandakumar, M. V., Krautscheid, H., & Schneider, C. (2010). Copper-bipyridine-catalyzed enantioselective α-amination of β-keto esters. Tetrahedron Letters, 51, 1860–1862. DOI: 10.1016/j.tetlet.2010.02.007. http://dx.doi.org/10.1016/j.tetlet.2010.02.00710.1016/j.tetlet.2010.02.007Search in Google Scholar
[18] Gould, K. J., Manners, C. N., Payling, D. W., Suschitzky, J. L., & Wells, E. (1988). Predictive structure-activity relationships in a series of pyranoquinoline derivatives. A new primate model for the identification of antiallergic activity. Journal of Medicinal Chemistry, 31, 1445–1453. DOI: 10.1021/jm00402a033. http://dx.doi.org/10.1021/jm00402a03310.1021/jm00402a033Search in Google Scholar
[19] Hayashi, Y., Toyoshima, M., Gotoh, H., & Ishikawa, H. (2009). Diphenylprolinol silyl ether catalysis in an asymmetric formal carbo [3 + 3] cycloaddition reaction via a domino Michael/Knoevenagel condensation. Organic Letters, 11, 45–48. DOI: 10.1021/ol802330h. http://dx.doi.org/10.1021/ol802330h10.1021/ol802330hSearch in Google Scholar
[20] Iglesias, E. (2004). Application of organized microstructures to study keto-enol equilibrium of β-dicarbonyl compounds. Current Organic Chemistry, 8, 1–24. DOI: 10.2174/1385272043486124. http://dx.doi.org/10.2174/138527204348612410.2174/1385272043486124Search in Google Scholar
[21] Jios, J. L., & Duddeck, H. (2000). 17O NMR spectroscopy of 1-(2-hydroxyphenyl)-3-naphthylpropane-1,3-diones. Influences of keto-enol tautomerism and substituents. Magnetic Resonance in Chemistry, 38, 512–514. DOI: 10.1002/1097-458X(200007)38:7〈512::AID-MRC664〉3.0.CO;2-Z. http://dx.doi.org/10.1002/1097-458X(200007)38:7<512::AID-MRC664>3.0.CO;2-Z10.1002/1097-458X(200007)38:7<512::AID-MRC664>3.0.CO;2-ZSearch in Google Scholar
[22] Jonckers, T. H. M., van Miert, S., Cimanga, K., Bailly, C., Colson, P., De Pauw-Gillet, M. C., van den Heuvel, H., Claeys, M., Lemière, F., Esmans, E. L., Rozenski, J., Quirijnen, L., Maes, L., Dommisse, R., Lemière, G. L. F., Vlietinck, A., & Pieters, L. (2002). Synthesis, cytotoxicity, and antiplasmodial and antitrypanosomal activity of new Neocryptolepine derivatives. Journal of Medicinal Chemistry, 45, 3497–3508. DOI: 10.1021/jm011102i. http://dx.doi.org/10.1021/jm011102i10.1021/jm011102iSearch in Google Scholar PubMed
[23] Kalita, P. K., Baruah, B., & Bhuyan, P. J. (2006). Synthesis of novel pyrano[2,3-b]quinolines from simple acetanilides via intramolecular 1,3-dipolar cycloaddition. Tetrahedron Letters, 47, 7779–7782. DOI: 10.1016/j.tetlet.2006.08.086. http://dx.doi.org/10.1016/j.tetlet.2006.08.08610.1016/j.tetlet.2006.08.086Search in Google Scholar
[24] Kuninobu, Y., Morita, J., Nishi, M., Kawata, A., & Takai, K. (2009). Rhenium-catalyzed formation of bicyclo[3.3.1]nonene frameworks by a reaction of cyclic β-keto esters with terminal alkynes. Organic Letters, 11, 2535–2537. DOI: 10.1021/ol900772h. http://dx.doi.org/10.1021/ol900772h10.1021/ol900772hSearch in Google Scholar PubMed
[25] Little, A., & Porco, J. A., Jr. (2012). Total syntheses of Graphisin A and Sydowinin B. Organic Letters, 14, 2862–2865. DOI: 10.1021/ol301107m. http://dx.doi.org/10.1021/ol301107m10.1021/ol301107mSearch in Google Scholar PubMed PubMed Central
[26] Li, Y., Zhang, C., Sun, M., & Gao, W. (2009). Facile synthesis of 10-tert-butyl[1]benzoxepino[3,4-b][1,3]-dioxolo[4,5-g]quinolin-12(6H)-ones. Journal of Heterocyclic Chemistry, 46, 1190–1194. DOI: 10.1002/jhet.203. http://dx.doi.org/10.1002/jhet.20310.1002/jhet.203Search in Google Scholar
[27] Liao, M., & Wang, J. (2006). CuSO4-catalyzed diazo decomposition in water: a practical synthesis of β-keto esters. Tetrahedron Letters, 47, 8859–8861. DOI: 10.1016/j.tetlet.2006.10.059. http://dx.doi.org/10.1016/j.tetlet.2006.10.05910.1016/j.tetlet.2006.10.059Search in Google Scholar
[28] Magesh, C. J., Makesh, S. V., & Perumal, P. T. (2004). Highly diastereoselective inverse electron demand (IED) Diels-Alder reaction mediated by chiral salen-AlCl complex: the first, target-oriented synthesis of pyranoquinolines as potential antibacterial agents. Bioorganic & Medicinal Chemistry Letters, 14, 2035–2040. DOI: 10.1016/j.bmcl.2004.02.057. http://dx.doi.org/10.1016/j.bmcl.2004.02.05710.1016/j.bmcl.2004.02.057Search in Google Scholar PubMed
[29] Majumdar, K. C., Taher, A., & Ponra, S. (2010). Unusual product from condensative cyclization: Pyrano[3,2-f]quinolin-3,10-diones from 6-amino-5-[(trimethylsilyl)ethynyl]-2H-chromen-2-one and aryl aldehydes. Synlett, 2010, 735–740. DOI: 10.1055/s-0029-1219378. http://dx.doi.org/10.1055/s-0029-121937810.1055/s-0029-1219378Search in Google Scholar
[30] Matsuya, Y., Katayanagi, H., Ohdaira, T., Wei, Z. L., Kondo, T., & Nemoto, H. (2009). Novel 3,4-diazabenzotropone compounds (2,3-benzodiazepin-5-ones): synthesis, unique reactivity, and biological evaluation. Organic Letters, 11, 1361–1364. DOI: 10.1021/ol900154x. http://dx.doi.org/10.1021/ol900154x10.1021/ol900154xSearch in Google Scholar PubMed
[31] Mohmed, E. A. (1994). Some new quinolones of expected pharmaceutical importance derived from 1,2-dihydro-4-hydroxy-1-methyl-2-oxoquinoline-3-carbaldehyde. Chemical Papers, 48, 261–267. Search in Google Scholar
[32] Mordant, C., Reymond, S., Tone, H., Lavergne, D., Touati, R., Ben Hassine, B., Ratovelomanana-Vidal, V., & Genet, J. P. (2007). Total synthesis of dolastatin 10 through ruthenium-catalyzed asymmetric hydrogenations. Tetrahedron, 63, 6115–6123. DOI: 10.1016/j.tet.2007.03.036. http://dx.doi.org/10.1016/j.tet.2007.03.03610.1016/j.tet.2007.03.036Search in Google Scholar
[33] Murata, H., Ishitani, H., & Iwamoto, M. (2008). Selective synthesis of α-substituted β-keto esters from aldehydes and diazoesters on mesoporous silica catalysts. Tetrahedron Letters, 49, 4788–4791. DOI: 10.1016/j.tetlet.2008.05.077. http://dx.doi.org/10.1016/j.tetlet.2008.05.07710.1016/j.tetlet.2008.05.077Search in Google Scholar
[34] Nawrot-Modranka, J., Nawrot, E., & Graczyk, J. (2006). In vivo antitumor, in vitro antibacterial activity and alkylating properties of phosphorohydrazine derivatives of coumarin and chromone. European Journal of Medicinal Chemistry, 41, 1301–1309. DOI: 10.1016/j.ejmech.2006.06.004. http://dx.doi.org/10.1016/j.ejmech.2006.06.00410.1016/j.ejmech.2006.06.004Search in Google Scholar
[35] Padwa, A., & Au, A. (1976). Involvement of enol tautomers in the photoisomerization of 3-substituted isochromanones. Journal of the American Chemical Society, 98, 5581–5590. DOI: 10.1021/ja00434a029. http://dx.doi.org/10.1021/ja00434a02910.1021/ja00434a029Search in Google Scholar
[36] Phun, L. H., Patil, D. V., Cavitt, M. A., & France, S. (2011). A catalytic homo-Nazarov cyclization protocol for the synthesis of heteroaromatic ring-fused cyclohexanones. Organic Letters, 13, 1952–1955. DOI: 10.1021/ol200305n. http://dx.doi.org/10.1021/ol200305n10.1021/ol200305nSearch in Google Scholar
[37] Ramesh, M., Mohan, P. S., & Shanmugam, P. (1984). A convenient synthesis of flindersine, atanine and their analogues. Tetrahedron, 40, 4041–4049. DOI: 10.1016/0040-4020(84)85084-x. http://dx.doi.org/10.1016/0040-4020(84)85084-X10.1016/0040-4020(84)85084-XSearch in Google Scholar
[38] Singh, M. K., Chandra, A., Singh, B., & Singh, R. M. (2007). Synthesis of diastereomeric 2,4-disubstituted pyrano[2,3-b]quinolines from 3-formyl-2-quinolones through O-C bond formation via intramolecular electrophilic cyclization. Tetrahedron Letters, 48, 5987–5990. DOI: 10.1016/j.tetlet.2007.06.127. http://dx.doi.org/10.1016/j.tetlet.2007.06.12710.1016/j.tetlet.2007.06.127Search in Google Scholar
[39] Singh, B., Chandra, A., Singh, S., & Singh, R. M. (2011). Basefree NIS promoted electrophilic cyclization of alkynes: an efficient synthesis of iodo substituted pyrano[4,3-b]quinolines. Tetrahedron, 67, 505–511. DOI: 10.1016/j.tet.2010.10.081. http://dx.doi.org/10.1016/j.tet.2010.10.08110.1016/j.tet.2010.10.081Search in Google Scholar
[40] Temperini, C., Cecchi, A., Scozzafava, A., & Supuran, C. T. (2009). Carbonic anhydrase inhibitors. Comparison of Chlorthalidone and Indapamide X-ray crystal structures in adducts with isozyme II: When three water molecules and the keto-enol tautomerism make the difference. Journal of Medicinal Chemistry, 52, 322–328. DOI: 10.1021/jm801386n. http://dx.doi.org/10.1021/jm801386n10.1021/jm801386nSearch in Google Scholar PubMed
[41] Witherup, K.M., Ransom, R. W., Graham, A. C., Bernard, A. M., Salvatore, M. J., Lumma, W. C., Anderson, P. S., Pitzenberger, S. M., & Varga, S. L. (1995). Martinelline and martinellic acid, novel G-protein linked receptor antagonists from the tropical plant Martinella iquitosensis (Bignoniaceae). Journal of the American Chemical Society, 117, 6682–6685. DOI: 10.1021/ja00130a005. http://dx.doi.org/10.1021/ja00130a00510.1021/ja00130a005Search in Google Scholar
[42] Wu, L., & Yang, D. (2009). Synthesis, characterization and single crystal structure of ethyl 2-(substituted-piperazin-1-ylmethyl)-quinoline-3-carboxylate derivatives. Chinese Journal of Organic Chemistry, 29, 1122–1128. Search in Google Scholar
[43] Wu, J., Chen, W., Hu, M., Zou, H., & Yu, Y. (2010). Synthesis of polysubstituted 5-aminooxazoles from α-diazocarbonyl esters and α-isocyanoacetamides. Organic Letters, 12, 616–618. DOI: 10.1021/ol902850a. http://dx.doi.org/10.1021/ol902850a10.1021/ol902850aSearch in Google Scholar PubMed
[44] Xue, S., Liu, Y. K., Li, L. Z., & Guo, Q. X. (2005). Zinc-mediated ring-expansion and chain-extension reactions of β-keto esters. The Journal of Organic Chemistry, 70, 8245–8247. DOI: 10.1021/jo0512498. http://dx.doi.org/10.1021/jo051249810.1021/jo0512498Search in Google Scholar
[45] Yadav, J. S., Subba Reddy, B. V., Eeshwaraiah, B., & Reddy, P. N. (2005). Niobium(V) chloride-catalyzed C-H insertion reactions of α-diazoesters: synthesis of β-keto esters. Tetrahedron, 61, 875–878. DOI: 10.1016/j.tet.2004.11.027. http://dx.doi.org/10.1016/j.tet.2004.11.02710.1016/j.tet.2004.11.027Search in Google Scholar
[46] Yamada, N., Kadowaki, S., Takahashi, K., & Umezu, K. (1992). MY-1250, a major metabolite of the anti-allergic drug repirinast, induces phosphorylation of a 78-kDa protein in rat mast cells. Biochemical Pharmacology, 44, 1211–1213. DOI: 10.1016/0006-2952(92)90387-x. http://dx.doi.org/10.1016/0006-2952(92)90387-X10.1016/0006-2952(92)90387-XSearch in Google Scholar
[47] Zhang, Q., Zhang, Z., Yan, Z., Liu, Q., & Wang, T. (2007). A new efficient synthesis of pyranoquinolines from 1-acetyl N-arylcyclopentanecarboxamides. Organic Letters, 9, 3651–3653. DOI: 10.1021/ol701536q. http://dx.doi.org/10.1021/ol701536q10.1021/ol701536qSearch in Google Scholar PubMed
© 2012 Institute of Chemistry, Slovak Academy of Sciences
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects
Articles in the same Issue
- Identification of carbohydrate isomers in flavonoid glycosides after hydrolysis by hydrophilic interaction chromatography
- Preparation of a new metallomicelle catalyst for the hydrolysis of bis(4-nitrophenyl) phosphate
- Synthesis and catalytic performance of MCM-41 modified with tetracarboxylphthalocyanine
- Comparison of polymeric and ceramic membranes performance in the process of micellar enhanced ultrafiltration of cadmium(II) ions from aqueous solutions
- Pertraction of cadmium and zinc ions using a supported liquid membrane impregnated with different carriers
- Effect of lentil and bean flours on rheological and baking properties of wheat dough
- Preparation, structural characterisation, and magnetic properties of [Cu(men)2][Cu2Cd2Cl2(CN)6] (men = N-methylethane-1,2-diamine)
- Structure and properties of 2-[(E)-2-(4-dipropylaminophenyl)-1-ethenyl]-1,3,3-trimethyl-3H-indolium chloride
- Properties of water-soluble carboxymethyl chitosan film modified by hydrophobic poly(propylene glycol)
- Characterisation of hydroxyapatite surface modified by poly(ethylene glycol) and poly(hydroxyethyl methacrylate) grafting
- Synthesis and keto-enol tautomerism of ethyl 4-oxo-3,4-dihydro-1H-pyrano[3,4-b]quinoline-3-carboxylate
- An efficient method for the preparation of benzyl γ-ketohexanoates
- Micelle nano-reactors as mediators of water-insoluble ligand complexation with Cu(II) ions in aqueous medium
- Reactivity of base catalysed hydrolysis of 2-pyridinylmethylene-8-quinolinyl-Schiff base iron(II) iodide complexes: solvent effects