Abstract
The first finds of iron nitrides and carbonitride as inclusions in lower-mantle diamond from Rio Soriso, Brazil, are herein reported. These grains were identified and studied with the use of transmission electron microscopy (TEM), electron diffraction analysis (EDX), and electron energy loss spectra (EELS). Among nitrides, trigonal Fe3N and orthorhombic Fe2N are present. Carbonitride is trigonal Fe9(N0.8C0.2)4. These mineral phases associate with iron carbide, Fe7C3, silicon carbide, SiC, Cr-Mn-Fe and Mn-Fe oxides; the latter may be termed Mn-rich xieite. Our identified finds demonstrate a wide field of natural compositions from pure carbide to pure nitride, with multiple stoichiometries from M5(C,N)3 to M23(C,N)6 and with M/(C,N) from 1.65 to 3.98. We conclude that the studied iron nitrides and carbonitrides were formed in the lowermost mantle as the result of the infiltration of liquid metal, containing light elements from the outer core into the D″ layer, with the formation of the association: native Fe0 + iron nitrides, carbides, and transitional compounds + silicon carbide. They indicated that major reservoirs of nitrogen should be expected in the core and in the lowermost mantle, providing some solution to the problem of nitrogen balance in the Earth.
Acknowledgments
The authors thank Anja Schreiber for milling FIB foils from diamond samples and A. Shiryaev and an anonymous reviewer for their constructive criticism, which helped us to improve the manuscript. Particular thanks are also due to the Editor Fabrizio Nestola for his efficient handling of the manuscript.
References cited
Adler, J.F., and Williams, Q. (2005) A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth’s core. Journal of Geophysical Research, 110, B01203, 10.1029/2004JB003103.Suche in Google Scholar
Barsukov, V.L., and Tarasov, L.S. (1982) Moon rock mineralogy. International Geology Review, 26, 238–248.10.1080/00206818209452398Suche in Google Scholar
Bergin, E.A., Blake, G.A., Ciesla, F., Hirschmann, M.M., and Li, J. (2015) Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proceedings of the National Academy of Sciences, 112, 8965–8970, 10.1073/pnas.1500954112.Suche in Google Scholar
Bordzov, Yu., Palyanov., Yu., Kupriyanov, I., and Efremov, A. (2002) HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system. Diamond and Related Materials, 11(11), 1863–1870, 10.1016/S0925-9635(02)00184-X.Suche in Google Scholar
Bouchard, J.P. (1967) Etude structural des carbures des manganeses. Annales de Chimie, 353–366.Suche in Google Scholar
Bouhifd, M.A., Roskosz, M., Jephcoat, A.P., and Mysen, B.O. (2010) Nitrogen solubility in a molten assemblage of an (Fe, Ni) alloy and a CI chondritic silicate up to 18 GPa. Geochimica et Cosmochimica Acta, 74 (12S), A109.Suche in Google Scholar
Buchwald, V.F. (1975) Handbook of Iron Meteorites, their History, Distribution, Composition, and Structure, 1, 243 p. Center for Meteorite Studies, Tempe/University of California Press, Berkeley.Suche in Google Scholar
Buchwald, V.F. (1977) Mineralogy of iron meteorites. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286, 453–491.Suche in Google Scholar
Buchwald, V.F. (1992) On the use of iron by the Eskimos in Greenland. Materials Characterization, 29, 139–176.10.1016/1044-5803(92)90112-USuche in Google Scholar
Bulanova, G.P., and Zayakina, N.V. (1991) Graphite–iron–cohenite assemblage in the central zone of diamond from 23rd Party Congress kimberlite. Doklady Akademii Nauk SSSR 317, 706–709 (in Russian).Suche in Google Scholar
Busigny, V., and Bebout, G.E. (2013) Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions. Elements, 9, 353–358.10.2113/gselements.9.5.353Suche in Google Scholar
Capitani, G.C., Di Pierro, S., and Tempesta, G. (2007) The 6H-(SiC) structure model: further refinement from SCXRD data from a terrestrial moissanite. American Mineralogist, 92, 403–407.10.2138/am.2007.2346Suche in Google Scholar
Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1(2), 79–84.10.2113/gselements.1.2.79Suche in Google Scholar
Cartigny, P., and Marty, B. (2013) Nitrogen isotopes and mantle geodynamics: The emergence of life and the atmosphere–crust–mantle connection. Elements, 9, 359–366.10.2113/gselements.9.5.359Suche in Google Scholar
Chen, B., Gao, L., Lavina, B., Dera, P., Alp, E.E., and Li, J. (2012) Magneto-elastic coupling in compressed Fe7C3 supports carbon in Earth’s inner core. Geophysical Research Letters, 39, L18301, 10.1029/2012GL052875.Suche in Google Scholar
Chen, B., Li, Z., Zhang, D., Liu, J., Hu, M.Y., Zhao, J., Bi, W., Alp, E.E., Xiao, Y., Chow, P., and Li, J. (2014) Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences, 111(50), 17,755–17,758, 10.1073/pnas.1411154111.Suche in Google Scholar
Chen, M., Shu, J., Mao, H.-k., Xie, X., and Hemley, R.J. (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences, 100, 14,651–14,654.10.1073/pnas.2136599100Suche in Google Scholar
Chen, M., Shu, J., and Mao, H.-k. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin 53, 3341–3345.10.1007/s11434-008-0407-1Suche in Google Scholar
Cottrell, A.H. (1995) Chemical Bonding in Transition Metal Carbides. Institute of Metals, London, 97 pp.Suche in Google Scholar
Dalou, C., Hirschmann, M.M., von der Handt, A., Mosenfelder, J., and Armstrong, L.S. (2016) Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth and Planetary Science Letters, 458, 141–151, 10.1016/j.epsl.2016.10.026.Suche in Google Scholar
Dziewonski, A., and Anderson, D. (1981) Preliminary reference Earth model. Physics of Earth and Planetary Interiors, 25, 297–356, 10.1016/0031-9201(81)90046-7.Suche in Google Scholar
Forchhammer, J.G. (1861) Fortegnelse over de i Universitetets Mineralsampling opbevarede Meteoriter. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, Copenhagen, June, 225–229.Suche in Google Scholar
Goldblatt, C., Claire, M.W., Lenton, T.M., Matthews, A.J., Watson, A.J., and Zahnle, K.J. (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2, 891–896.10.1038/ngeo692Suche in Google Scholar
Goldstein, G.I., Hewins, R.H., and Romig, A.D. Jr. (1976) Carbides in Lunar soils and rocks. Abstracts of the Lunar and Planetary Science Conference, 7, 310–312.Suche in Google Scholar
Goodrich, C.A., and Bird, J.M. (1985) Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disko Island; the role of carbon in mafic magmas. Journal of Geology, 93, 475–492.10.1086/628967Suche in Google Scholar
Gubbins, D., Sreenivasan, B., Mound, J., and Rost, S. (2011) Melting of the Earth’s inner core. Nature, 473, 361–363, 10.1038/nature10068.Suche in Google Scholar PubMed
Hirschmann, M.M. (2016) Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. American Mineralogist 101, 540–553.10.2138/am-2016-5452Suche in Google Scholar
Hutchison, M.T., Cartigny, P., and Harris, J.W. (1999) Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from São Luiz, Brazil. In Gurney, J.J., Gurney, J.L., Pascoe, M.D., and Richardson, S.H., Eds., Proceedings of the VIIth International Kimberlite Conference, vol. 1, p. 372–382. Red Roof Design, Cape Town.Suche in Google Scholar
Irmer, W. (1920) Der Basalt des Bühls bei Kassel und seine Einschlüsse von Magnetit, Magnetkies und gediegen Eisen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 13, 91–108.Suche in Google Scholar
Jack, K.H. (1952) The iron-nitrogen system: The crystal structures of ε-phase iron nitrides. Acta Crystallographica, 5, 404–411.10.1107/S0365110X52001258Suche in Google Scholar
Jacob, D.E., Kronz, A., and Viljoen, K.S. (2004) Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contributions to Mineralogy and Petrology, 146, 566–576.10.1007/s00410-003-0518-2Suche in Google Scholar
Jacobs, H., Rechenbach, D., and Zachwieja, U. (1995) Structure determination of γ-Fe4N and ε-Fe3N. Journal of Alloys and Compounds, 277, 10–17.10.1016/0925-8388(95)01610-4Suche in Google Scholar
Jones, A.P., Dobson, D., Wood, I., Beard, A.D., Verchovsky, A., and Milledge, H.J. (2008) Iron carbide and metallic inclusions in diamonds from Jagersfontein. 9th International Kimberlite Conference, Extended Abstract No. 9IKC-A-00360, 3 pp.Suche in Google Scholar
Kadik, A.A., Kurovskaya, N.A., Ignat’ev, Yu.A., Kononkova, N.N., Koltashev, V. V., and Plotnichenko, V.G. (2011) Influence of oxygen fugacity on the solubility of nitrogen, carbon, and hydrogen in FeO–Na2O–SiO2–Al2O3 melts in equilibrium with metallic iron at 1.5 GPa and 1400 °C. Geochemistry International, 49, 429–438.10.1134/S001670291105003XSuche in Google Scholar
Kadik, A.A., Litvin, Yu.A., Koltashev, V.V., Kryukova, E.B., Plotnichenko, V.G., Tsekhonya, T.I., and Kononkova, N.N. (2013) Solution behavior of reduced N–H–O volatiles in FeO–Na2O–SiO2–Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature. Physics of the Earth and Planetary Interiors, 214, 14–24.10.1016/j.pepi.2012.10.013Suche in Google Scholar
Kagi, H., Zedgenizov, D.A., Ohfuji, H., and Ishibashi, H. (2016) Micro- and nanoinclusions in a superdeep diamond from São Luiz, Brazil. Geochemistry International, 54(10), 834–838.10.1134/S0016702916100062Suche in Google Scholar
Kaminsky, F.V., and Wirth, R. (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canadian Mineralogist 49(2), 555–572, 10.3749/canmin.49.2.555.Suche in Google Scholar
Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., and Thomas, R. (2009a) Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816, 10.1180/minmag.2009.073.5.797.Suche in Google Scholar
Kaminsky, F.V., Khachatryan, G.K., Andreazza, P., Araujo, D., and Griffin, W.L. (2009b) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842, 10.1016/j.lithos.2009.03.036.Suche in Google Scholar
Kaminsky, F.V., Wirth, R., and Schreiber, A. (2013) Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 447–466, 10.3749/canmin.51.5.669.Suche in Google Scholar
Kaminsky, F.V., Wirth, R., and Schreiber, A. (2015) A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104, 10.3749/canmin.1400070.Suche in Google Scholar
Kaminsky, F.V., Ryabchikov, I.D., and Wirth, R. (2016) A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology 110(2-3), 387–398, 10.1007/s00710-015-0368-4.Suche in Google Scholar
Kerridge, J.F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundance and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49, 1707–1714.10.1016/0016-7037(85)90141-3Suche in Google Scholar
Kosolapova, T.Y. (1971) Carbides: Properties, Production, and Applications, 298 p. Plenum Press, New York.Suche in Google Scholar
Leineweber, A., Jacobs, H., Huening, F., Lueken, H., and Kockelmann, W. (2001) Nitrogen ordering and ferromagnetic properties of ε-(Fe3N1+x) (0.10 ≤ x ≤ 0.39) and ε-Fe3(N0.80C0.20)1.38. Journal of Alloys and Compounds, 316, 21–38.10.1002/chin.200126011Suche in Google Scholar
Li, Y., Wiedenbeck, M., Shcheka, S., and Keppler, H. (2013) Nitrogen solubility in upper mantle minerals. Earth and Planetary Science Letters, 377, 311–323.10.1016/j.epsl.2013.07.013Suche in Google Scholar
Li, Y., Marty, B., Shcheka, S., Zimmermann, L., and Keppler, H. (2016) Nitrogen isotope fractionation during terrestrial core–mantle separation. Geochemical Perspectives Letters, 2, 138–147.10.7185/geochemlet.1614Suche in Google Scholar
Lord, O.T., Walter, M.J., Dasgupta, R., Walker, D., and Clark, S.M. (2009) Melting in the Fe–C system to 70 GPa. Earth and Planetary Science Letters, 284, 157–167, 10.7185/geochemlet.1614.Suche in Google Scholar
Marty, B. (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313–314, 56–66, 10.1016/j.epsl.2011.10.040.Suche in Google Scholar
McDonough, W.F. (2014) Compositional Model for the Earth’s Core. In R.W. Carlso, Ed., Treatise on Geochemistry, 2nd ed., 3, p. 559–576. Elsevier.10.1016/B978-0-08-095975-7.00215-1Suche in Google Scholar
McDonough, W.F., and Sun, S.-S. (1995) Composition of the Earth. Chemical Geology 120, 223–253, 10.1016/0009-2541(94)00140-4.Suche in Google Scholar
Miyazaki, A., Hiyagon, H., Sugiura, N., Hirose, K., and Takahasi, E. (2004) Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: Implications for the origin and degassing history of nitrogen and noble gases in the Earth. Geochimica et Cosmochimica Acta, 68, 387–401.10.1016/S0016-7037(03)00484-8Suche in Google Scholar
Morelli, A., Dziewonski, A.M., and Woodhouse, J.H. (1986) Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters, 13, 1545–1548.10.1029/GL013i013p01545Suche in Google Scholar
Nakajima, Y., Takahashi, E., Suzuki, T., and Funakoshi, K.-i. (2009) “Carbon in the core” revisited. Physics of the Earth and Planetary Interiors, 174, 202–211.10.1016/j.pepi.2008.05.014Suche in Google Scholar
Nakajima, Y., Takahashi, E., Sata, N., Nishihara, Y., Hirose, K., Funakoshi, K.-i., Ohishi, Y. (2011) Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth’s core. American Mineralogist, 96, 1158–1165.10.2138/am.2011.3703Suche in Google Scholar
Niewa, R., Rau, D., Wosylus, A., Meier, K., Hanfland, M., Wessel, M., Dronskowski, R., Dzivenko, D.A., Riedel, R., and Schwarz, U. (2009) High-pressure, high-temperature single crystal growth, ab initio electronic structure calculation and equation of state of ε-Fe3N1+x. Chemistry of Materials, 21(2), 392–398, 10.1021/cm802721k.Suche in Google Scholar
Nordenskiöld, A.E. (1870) Redogörelse for en expedition till Grönland or 1870. Öfversigt af Svenska Vetenskaps-Akademiens Förhandlinger, Stockholm, 27, 1057–1070.Suche in Google Scholar
Nordenskiöld, A.E. (1871) Redogörelse for en ekspedition till Grönland 1870. Öfversigt af Svenska Vetenskaps-Akademiens Förhandlinger, Stockholm 28, 973–1082.Suche in Google Scholar
Oreshin, S.I., and Vinnik, L.P. (2004) Heterogeneity and anisotropy of seismic attenuation in the inner core. Geophysical Research Letters, 31, L02613.10.1029/2003GL018591Suche in Google Scholar
Palme, H., and O’Neill, H.St.C. (2004) Cosmochemical estimates of Mantle Composition. In Holland, H.D., and Turekian, K.K., Eds., Treatise on Geochemistry, 2, 1–38. Elsevier.10.1016/B0-08-043751-6/02177-0Suche in Google Scholar
Petford, N., Rushmer, T., and Yuen, D. A. (2007) Deformation-induced mechanical instabilities at the core-mantle boundary. Post-Perovskite, The Last Mantle Phase Transition, 271–287 (AGU 2007).10.1029/174GM18Suche in Google Scholar
Prescher, C., Dubrovinsky, L., Bykova, E., Kupenko, I., Glazyrin, K., Kantor, A., McCammon, C., Mookherjee, M., Nakajima, Y., Miyajima, N., and others. (2015) High Poisson’s ratio of Earth’s inner core explained by carbon alloying. Nature Geoscience, 8, 220–223.10.1038/ngeo2370Suche in Google Scholar
Rechenbach, D., and Jacobs, H. (1996) Structure determination of ζ-Fe2N by neutron and synchrotron powder diffraction. Journal of Alloys and Compounds, 235, 15–22.10.1016/0925-8388(95)02097-7Suche in Google Scholar
Roskosz, M., Bouhifd, M.A., Jephcoat, A.P., Marty, B., and Mysen, B.O. (2013) Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochimica et Cosmochimica Acta, 121, 15–28.10.1016/j.gca.2013.07.007Suche in Google Scholar
Rudloff-Grund, J., Brenker, F., Marquardt, K., Howell, D., Schreiber, A., O’Reilly, S. Y., Griffin, W.L., and Kaminsky, F.V. (2016) Nitrogen-nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos 265, 57–67, 10.1016/j.lithos.2016.09.022.Suche in Google Scholar
Rushmer, T., Minarik, W.G., and Taylor, G.J. (2000) Physical processes of core formation. Origin of the Earth and Moon, 227–245.10.2307/j.ctv1v7zdrp.19Suche in Google Scholar
Scott, E.R.D. (1971) New carbide (Fe, Ni)23C6, found in meteorites. Nature Physical Sciences, 229, 61–62.10.1038/physci229061a0Suche in Google Scholar
Shepard, C.U. (1867) New classification of meteorites with an enumeration of meteoric species. American Journal of Science and Arts, Second Series, 43, 22–28.10.2475/ajs.s2-43.127.22Suche in Google Scholar
Shi, N., Bai, W., Li, G., Xiong, M., Fang, Q., Yang, J., Ma, Z., and Rong, H. (2009) Yarlongite: A new metallic carbide mineral. Acta Geologica Sinica, 83, 52–56.10.1111/j.1755-6724.2009.00007.xSuche in Google Scholar
Steenstrup, K.J.V. (1875) Om de Nordenskiöldske jernmasser og om forekomsten af gediegent jern i basalt. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, Copenhagen 7, 284–306.Suche in Google Scholar
Stixrude, L., and Cohen, R.E. (1995) High-pressure elasticity of iron and anisotropy of Earth’s inner core. Science, 267, 1972–1975.10.1126/science.267.5206.1972Suche in Google Scholar PubMed
Stixrude, L., Wasserman, E., and Cohen, R.E. (1997) Composition and temperature of Earth’s inner core. Journal of Geophysical Research, 102(B11), 24,729–24,739.10.1029/97JB02125Suche in Google Scholar
Strunz, H. (1978) Mineralogische Tabellen. 7, unferänderte Auflage, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 621 SS.Suche in Google Scholar
Sugiura, N. (1998) Ion probe measurements of carbon and nitrogen in iron meteorites. Meteoritica and Planetary Sciience, 33, 393–409.10.1111/j.1945-5100.1998.tb01645.xSuche in Google Scholar
Tucker, J.M., and Mukhopadhyay, S. (2014) Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth and Planetary Science Letters, 393, 254–265, 10.1016/j.epsl.2014.02.050.Suche in Google Scholar
Ulff-M⊘ller, F. (1985) Solidification history of the Kitdlit lens: Immiscible metal and sulphide liquids from a basaltic dyke on Disko, Central West Greenland. Journal of Petrology, 26, 64–91.10.1093/petrology/26.1.64Suche in Google Scholar
Vocadlo, L. (2009) Mineralogy of the Earth—The Earth’s core: Iron and iron alloys. In G.D. Price, Ed., Treatise on Geophysics. Mineral Physics, p. 91–120. Elsevier.10.1016/B978-044452748-6.00032-8Suche in Google Scholar
Weinschenk, E. (1889) Über einige Bestandtheile des Meteoreisens von Magura, Arva, Ungarn. Annalen des Naturhistorischen Hofmuseums, Wien 4, 93–101.Suche in Google Scholar
Wirth, R. (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16, 863–876.10.1127/0935-1221/2004/0016-0863Suche in Google Scholar
Wirth, R. (2009) Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology, 261, 217–229.10.1016/j.chemgeo.2008.05.019Suche in Google Scholar
Wirth, R., Kaminsky, F., Matsyuk, S., and Schreiber, A. (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth and Planetary Science Letters, 286(1-2), 292–303, 10.1016/j.epsl.2009.06.043.Suche in Google Scholar
Yoder, C.F. (1995) Astrometric and geodetic properties of the Earth and the solar system. In T.J. Ahrens, Ed., Global Earth Physics: A Handbook of Physical Constants, Vol. AGU Reference Shelf, p. 1–31. American Geophysical Union, Washington, D.C.10.1029/RF001p0001Suche in Google Scholar
Zhang, Y., and Yin, Q.-Z. (2012) Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proceedings of the National Academy of Sciences, 109(48), 19,579–19,583.10.1073/pnas.1203826109Suche in Google Scholar PubMed PubMed Central
© 2017 by Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- How many boron minerals occur in Earth’s upper crust?
- Outlooks in Earth and Planetary Materials
- Network analysis of mineralogical systems
- Special collection: From magmas to ore deposits
- Geochemistry of the Cretaceous Kaskanak Batholith and genesis of the Pebble porphyry Cu-Au-Mo deposit, Southwest Alaska
- Special collection: From magmas to ore deposits
- Physicochemical controls on bismuth mineralization: An example from Moutoulas, Serifos Island, Cyclades, Greece
- Special collection: Earth analogs for martian geological materials and processes
- Geochemistry and mineralogy of a saprolite developed on Columbia River Basalt: Secondary clay formation, element leaching, and mass balance during weathering
- Special collection: Apatite: A common mineral, uncommonly versatile
- An ab-initio study of the energetics and geometry of sulfide, sulfite, and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer
- Special collection: Dynamics of magmatic processes
- The role of modifier cations in network cation coordination increases with pressure in aluminosilicate glasses and melts from 1 to 3 GPa
- Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen
- Accounting for the species-dependence of the 3500 cm−1 H2Ot infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses
- A finite strain approach to thermal expansivity’s pressure dependence
- Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results
- Single-crystal equations of state of magnesiowüstite at high pressures
- Analysis of erionites from volcaniclastic sedimentary rocks and possible implications for toxicological research
- Reconstructive phase transitions induced by temperature in gmelinite-Na zeolite
- Smoking gun for thallium geochemistry in volcanic arcs: Nataliyamalikite, TlI, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia
- How to facet gem-quality chrysoberyl: Clues from the relationship between color and pleochroism, with spectroscopic analysis and colorimetric parameters
- Letter
- Mn-Fe systematics in major planetary body reservoirs in the solar system and the positioning of the Angrite Parent Body: A crystal-chemical perspective
- Letter
- Dolomite-IV: Candidate structure for a carbonate in the Earth’s lower mantle
- Book Review
- Book Review
Artikel in diesem Heft
- How many boron minerals occur in Earth’s upper crust?
- Outlooks in Earth and Planetary Materials
- Network analysis of mineralogical systems
- Special collection: From magmas to ore deposits
- Geochemistry of the Cretaceous Kaskanak Batholith and genesis of the Pebble porphyry Cu-Au-Mo deposit, Southwest Alaska
- Special collection: From magmas to ore deposits
- Physicochemical controls on bismuth mineralization: An example from Moutoulas, Serifos Island, Cyclades, Greece
- Special collection: Earth analogs for martian geological materials and processes
- Geochemistry and mineralogy of a saprolite developed on Columbia River Basalt: Secondary clay formation, element leaching, and mass balance during weathering
- Special collection: Apatite: A common mineral, uncommonly versatile
- An ab-initio study of the energetics and geometry of sulfide, sulfite, and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer
- Special collection: Dynamics of magmatic processes
- The role of modifier cations in network cation coordination increases with pressure in aluminosilicate glasses and melts from 1 to 3 GPa
- Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen
- Accounting for the species-dependence of the 3500 cm−1 H2Ot infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses
- A finite strain approach to thermal expansivity’s pressure dependence
- Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results
- Single-crystal equations of state of magnesiowüstite at high pressures
- Analysis of erionites from volcaniclastic sedimentary rocks and possible implications for toxicological research
- Reconstructive phase transitions induced by temperature in gmelinite-Na zeolite
- Smoking gun for thallium geochemistry in volcanic arcs: Nataliyamalikite, TlI, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia
- How to facet gem-quality chrysoberyl: Clues from the relationship between color and pleochroism, with spectroscopic analysis and colorimetric parameters
- Letter
- Mn-Fe systematics in major planetary body reservoirs in the solar system and the positioning of the Angrite Parent Body: A crystal-chemical perspective
- Letter
- Dolomite-IV: Candidate structure for a carbonate in the Earth’s lower mantle
- Book Review
- Book Review