Home Physical Sciences Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen
Article
Licensed
Unlicensed Requires Authentication

Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen

  • Felix Kaminsky EMAIL logo and Richard Wirth
Published/Copyright: July 31, 2017
Become an author with De Gruyter Brill

Abstract

The first finds of iron nitrides and carbonitride as inclusions in lower-mantle diamond from Rio Soriso, Brazil, are herein reported. These grains were identified and studied with the use of transmission electron microscopy (TEM), electron diffraction analysis (EDX), and electron energy loss spectra (EELS). Among nitrides, trigonal Fe3N and orthorhombic Fe2N are present. Carbonitride is trigonal Fe9(N0.8C0.2)4. These mineral phases associate with iron carbide, Fe7C3, silicon carbide, SiC, Cr-Mn-Fe and Mn-Fe oxides; the latter may be termed Mn-rich xieite. Our identified finds demonstrate a wide field of natural compositions from pure carbide to pure nitride, with multiple stoichiometries from M5(C,N)3 to M23(C,N)6 and with M/(C,N) from 1.65 to 3.98. We conclude that the studied iron nitrides and carbonitrides were formed in the lowermost mantle as the result of the infiltration of liquid metal, containing light elements from the outer core into the D″ layer, with the formation of the association: native Fe0 + iron nitrides, carbides, and transitional compounds + silicon carbide. They indicated that major reservoirs of nitrogen should be expected in the core and in the lowermost mantle, providing some solution to the problem of nitrogen balance in the Earth.

Acknowledgments

The authors thank Anja Schreiber for milling FIB foils from diamond samples and A. Shiryaev and an anonymous reviewer for their constructive criticism, which helped us to improve the manuscript. Particular thanks are also due to the Editor Fabrizio Nestola for his efficient handling of the manuscript.

References cited

Adler, J.F., and Williams, Q. (2005) A high-pressure X-ray diffraction study of iron nitrides: Implications for Earth’s core. Journal of Geophysical Research, 110, B01203, 10.1029/2004JB003103.Search in Google Scholar

Barsukov, V.L., and Tarasov, L.S. (1982) Moon rock mineralogy. International Geology Review, 26, 238–248.10.1080/00206818209452398Search in Google Scholar

Bergin, E.A., Blake, G.A., Ciesla, F., Hirschmann, M.M., and Li, J. (2015) Tracing the ingredients for a habitable earth from interstellar space through planet formation. Proceedings of the National Academy of Sciences, 112, 8965–8970, 10.1073/pnas.1500954112.Search in Google Scholar

Bordzov, Yu., Palyanov., Yu., Kupriyanov, I., and Efremov, A. (2002) HPHT synthesis of diamond with high nitrogen content from an Fe3N–C system. Diamond and Related Materials, 11(11), 1863–1870, 10.1016/S0925-9635(02)00184-X.Search in Google Scholar

Bouchard, J.P. (1967) Etude structural des carbures des manganeses. Annales de Chimie, 353–366.Search in Google Scholar

Bouhifd, M.A., Roskosz, M., Jephcoat, A.P., and Mysen, B.O. (2010) Nitrogen solubility in a molten assemblage of an (Fe, Ni) alloy and a CI chondritic silicate up to 18 GPa. Geochimica et Cosmochimica Acta, 74 (12S), A109.Search in Google Scholar

Buchwald, V.F. (1975) Handbook of Iron Meteorites, their History, Distribution, Composition, and Structure, 1, 243 p. Center for Meteorite Studies, Tempe/University of California Press, Berkeley.Search in Google Scholar

Buchwald, V.F. (1977) Mineralogy of iron meteorites. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 286, 453–491.Search in Google Scholar

Buchwald, V.F. (1992) On the use of iron by the Eskimos in Greenland. Materials Characterization, 29, 139–176.10.1016/1044-5803(92)90112-USearch in Google Scholar

Bulanova, G.P., and Zayakina, N.V. (1991) Graphite–iron–cohenite assemblage in the central zone of diamond from 23rd Party Congress kimberlite. Doklady Akademii Nauk SSSR 317, 706–709 (in Russian).Search in Google Scholar

Busigny, V., and Bebout, G.E. (2013) Nitrogen in the silicate Earth: Speciation and isotopic behavior during mineral–fluid interactions. Elements, 9, 353–358.10.2113/gselements.9.5.353Search in Google Scholar

Capitani, G.C., Di Pierro, S., and Tempesta, G. (2007) The 6H-(SiC) structure model: further refinement from SCXRD data from a terrestrial moissanite. American Mineralogist, 92, 403–407.10.2138/am.2007.2346Search in Google Scholar

Cartigny, P. (2005) Stable isotopes and the origin of diamond. Elements, 1(2), 79–84.10.2113/gselements.1.2.79Search in Google Scholar

Cartigny, P., and Marty, B. (2013) Nitrogen isotopes and mantle geodynamics: The emergence of life and the atmosphere–crust–mantle connection. Elements, 9, 359–366.10.2113/gselements.9.5.359Search in Google Scholar

Chen, B., Gao, L., Lavina, B., Dera, P., Alp, E.E., and Li, J. (2012) Magneto-elastic coupling in compressed Fe7C3 supports carbon in Earth’s inner core. Geophysical Research Letters, 39, L18301, 10.1029/2012GL052875.Search in Google Scholar

Chen, B., Li, Z., Zhang, D., Liu, J., Hu, M.Y., Zhao, J., Bi, W., Alp, E.E., Xiao, Y., Chow, P., and Li, J. (2014) Hidden carbon in Earth’s inner core revealed by shear softening in dense Fe7C3. Proceedings of the National Academy of Sciences, 111(50), 17,755–17,758, 10.1073/pnas.1411154111.Search in Google Scholar

Chen, M., Shu, J., Mao, H.-k., Xie, X., and Hemley, R.J. (2003) Natural occurrence and synthesis of two new postspinel polymorphs of chromite. Proceedings of the National Academy of Sciences, 100, 14,651–14,654.10.1073/pnas.2136599100Search in Google Scholar

Chen, M., Shu, J., and Mao, H.-k. (2008) Xieite, a new mineral of high-pressure FeCr2O4 polymorph. Chinese Science Bulletin 53, 3341–3345.10.1007/s11434-008-0407-1Search in Google Scholar

Cottrell, A.H. (1995) Chemical Bonding in Transition Metal Carbides. Institute of Metals, London, 97 pp.Search in Google Scholar

Dalou, C., Hirschmann, M.M., von der Handt, A., Mosenfelder, J., and Armstrong, L.S. (2016) Nitrogen and carbon fractionation during core–mantle differentiation at shallow depth. Earth and Planetary Science Letters, 458, 141–151, 10.1016/j.epsl.2016.10.026.Search in Google Scholar

Dziewonski, A., and Anderson, D. (1981) Preliminary reference Earth model. Physics of Earth and Planetary Interiors, 25, 297–356, 10.1016/0031-9201(81)90046-7.Search in Google Scholar

Forchhammer, J.G. (1861) Fortegnelse over de i Universitetets Mineralsampling opbevarede Meteoriter. Oversigt over det Kongelige Danske Videnskabernes Selskabs Forhandlinger, Copenhagen, June, 225–229.Search in Google Scholar

Goldblatt, C., Claire, M.W., Lenton, T.M., Matthews, A.J., Watson, A.J., and Zahnle, K.J. (2009) Nitrogen-enhanced greenhouse warming on early Earth. Nature Geoscience, 2, 891–896.10.1038/ngeo692Search in Google Scholar

Goldstein, G.I., Hewins, R.H., and Romig, A.D. Jr. (1976) Carbides in Lunar soils and rocks. Abstracts of the Lunar and Planetary Science Conference, 7, 310–312.Search in Google Scholar

Goodrich, C.A., and Bird, J.M. (1985) Formation of iron-carbon alloys in basaltic magma at Uivfaq, Disko Island; the role of carbon in mafic magmas. Journal of Geology, 93, 475–492.10.1086/628967Search in Google Scholar

Gubbins, D., Sreenivasan, B., Mound, J., and Rost, S. (2011) Melting of the Earth’s inner core. Nature, 473, 361–363, 10.1038/nature10068.Search in Google Scholar PubMed

Hirschmann, M.M. (2016) Constraints on the early delivery and fractionation of Earth’s major volatiles from C/H, C/N, and C/S ratios. American Mineralogist 101, 540–553.10.2138/am-2016-5452Search in Google Scholar

Hutchison, M.T., Cartigny, P., and Harris, J.W. (1999) Carbon and nitrogen compositions and physical characteristics of transition zone and lower mantle diamonds from São Luiz, Brazil. In Gurney, J.J., Gurney, J.L., Pascoe, M.D., and Richardson, S.H., Eds., Proceedings of the VIIth International Kimberlite Conference, vol. 1, p. 372–382. Red Roof Design, Cape Town.Search in Google Scholar

Irmer, W. (1920) Der Basalt des Bühls bei Kassel und seine Einschlüsse von Magnetit, Magnetkies und gediegen Eisen. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 13, 91–108.Search in Google Scholar

Jack, K.H. (1952) The iron-nitrogen system: The crystal structures of ε-phase iron nitrides. Acta Crystallographica, 5, 404–411.10.1107/S0365110X52001258Search in Google Scholar

Jacob, D.E., Kronz, A., and Viljoen, K.S. (2004) Cohenite, native iron and troilite inclusions in garnets from polycrystalline diamond aggregates. Contributions to Mineralogy and Petrology, 146, 566–576.10.1007/s00410-003-0518-2Search in Google Scholar

Jacobs, H., Rechenbach, D., and Zachwieja, U. (1995) Structure determination of γ-Fe4N and ε-Fe3N. Journal of Alloys and Compounds, 277, 10–17.10.1016/0925-8388(95)01610-4Search in Google Scholar

Jones, A.P., Dobson, D., Wood, I., Beard, A.D., Verchovsky, A., and Milledge, H.J. (2008) Iron carbide and metallic inclusions in diamonds from Jagersfontein. 9th International Kimberlite Conference, Extended Abstract No. 9IKC-A-00360, 3 pp.Search in Google Scholar

Kadik, A.A., Kurovskaya, N.A., Ignat’ev, Yu.A., Kononkova, N.N., Koltashev, V. V., and Plotnichenko, V.G. (2011) Influence of oxygen fugacity on the solubility of nitrogen, carbon, and hydrogen in FeO–Na2O–SiO2–Al2O3 melts in equilibrium with metallic iron at 1.5 GPa and 1400 °C. Geochemistry International, 49, 429–438.10.1134/S001670291105003XSearch in Google Scholar

Kadik, A.A., Litvin, Yu.A., Koltashev, V.V., Kryukova, E.B., Plotnichenko, V.G., Tsekhonya, T.I., and Kononkova, N.N. (2013) Solution behavior of reduced N–H–O volatiles in FeO–Na2O–SiO2–Al2O3 melt equilibrated with molten Fe alloy at high pressure and temperature. Physics of the Earth and Planetary Interiors, 214, 14–24.10.1016/j.pepi.2012.10.013Search in Google Scholar

Kagi, H., Zedgenizov, D.A., Ohfuji, H., and Ishibashi, H. (2016) Micro- and nanoinclusions in a superdeep diamond from São Luiz, Brazil. Geochemistry International, 54(10), 834–838.10.1134/S0016702916100062Search in Google Scholar

Kaminsky, F.V., and Wirth, R. (2011) Iron carbide inclusions in lower-mantle diamond from Juina, Brazil. Canadian Mineralogist 49(2), 555–572, 10.3749/canmin.49.2.555.Search in Google Scholar

Kaminsky, F., Wirth, R., Matsyuk, S., Schreiber, A., and Thomas, R. (2009a) Nyerereite and nahcolite inclusions in diamond: Evidence for lower-mantle carbonatitic magmas. Mineralogical Magazine, 73(5), 797–816, 10.1180/minmag.2009.073.5.797.Search in Google Scholar

Kaminsky, F.V., Khachatryan, G.K., Andreazza, P., Araujo, D., and Griffin, W.L. (2009b) Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil. Lithos, 112S(2), 833–842, 10.1016/j.lithos.2009.03.036.Search in Google Scholar

Kaminsky, F.V., Wirth, R., and Schreiber, A. (2013) Carbonatitic inclusions in Deep Mantle diamond from Juina, Brazil: New minerals in the carbonate-halide association. Canadian Mineralogist, 51(5), 447–466, 10.3749/canmin.51.5.669.Search in Google Scholar

Kaminsky, F.V., Wirth, R., and Schreiber, A. (2015) A microinclusion of lower-mantle rock and some other lower-mantle inclusions in diamond. Canadian Mineralogist, 53(1), 83–104, 10.3749/canmin.1400070.Search in Google Scholar

Kaminsky, F.V., Ryabchikov, I.D., and Wirth, R. (2016) A primary natrocarbonatitic association in the Deep Earth. Mineralogy and Petrology 110(2-3), 387–398, 10.1007/s00710-015-0368-4.Search in Google Scholar

Kerridge, J.F. (1985) Carbon, hydrogen and nitrogen in carbonaceous chondrites: Abundance and isotopic compositions in bulk samples. Geochimica et Cosmochimica Acta, 49, 1707–1714.10.1016/0016-7037(85)90141-3Search in Google Scholar

Kosolapova, T.Y. (1971) Carbides: Properties, Production, and Applications, 298 p. Plenum Press, New York.Search in Google Scholar

Leineweber, A., Jacobs, H., Huening, F., Lueken, H., and Kockelmann, W. (2001) Nitrogen ordering and ferromagnetic properties of ε-(Fe3N1+x) (0.10 ≤ x ≤ 0.39) and ε-Fe3(N0.80C0.20)1.38. Journal of Alloys and Compounds, 316, 21–38.10.1002/chin.200126011Search in Google Scholar

Li, Y., Wiedenbeck, M., Shcheka, S., and Keppler, H. (2013) Nitrogen solubility in upper mantle minerals. Earth and Planetary Science Letters, 377, 311–323.10.1016/j.epsl.2013.07.013Search in Google Scholar

Li, Y., Marty, B., Shcheka, S., Zimmermann, L., and Keppler, H. (2016) Nitrogen isotope fractionation during terrestrial core–mantle separation. Geochemical Perspectives Letters, 2, 138–147.10.7185/geochemlet.1614Search in Google Scholar

Lord, O.T., Walter, M.J., Dasgupta, R., Walker, D., and Clark, S.M. (2009) Melting in the Fe–C system to 70 GPa. Earth and Planetary Science Letters, 284, 157–167, 10.7185/geochemlet.1614.Search in Google Scholar

Marty, B. (2012) The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth and Planetary Science Letters, 313–314, 56–66, 10.1016/j.epsl.2011.10.040.Search in Google Scholar

McDonough, W.F. (2014) Compositional Model for the Earth’s Core. In R.W. Carlso, Ed., Treatise on Geochemistry, 2nd ed., 3, p. 559–576. Elsevier.10.1016/B978-0-08-095975-7.00215-1Search in Google Scholar

McDonough, W.F., and Sun, S.-S. (1995) Composition of the Earth. Chemical Geology 120, 223–253, 10.1016/0009-2541(94)00140-4.Search in Google Scholar

Miyazaki, A., Hiyagon, H., Sugiura, N., Hirose, K., and Takahasi, E. (2004) Solubilities of nitrogen and noble gases in silicate melts under various oxygen fugacities: Implications for the origin and degassing history of nitrogen and noble gases in the Earth. Geochimica et Cosmochimica Acta, 68, 387–401.10.1016/S0016-7037(03)00484-8Search in Google Scholar

Morelli, A., Dziewonski, A.M., and Woodhouse, J.H. (1986) Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters, 13, 1545–1548.10.1029/GL013i013p01545Search in Google Scholar

Nakajima, Y., Takahashi, E., Suzuki, T., and Funakoshi, K.-i. (2009) “Carbon in the core” revisited. Physics of the Earth and Planetary Interiors, 174, 202–211.10.1016/j.pepi.2008.05.014Search in Google Scholar

Nakajima, Y., Takahashi, E., Sata, N., Nishihara, Y., Hirose, K., Funakoshi, K.-i., Ohishi, Y. (2011) Thermoelastic property and high-pressure stability of Fe7C3: Implication for iron-carbide in the Earth’s core. American Mineralogist, 96, 1158–1165.10.2138/am.2011.3703Search in Google Scholar

Niewa, R., Rau, D., Wosylus, A., Meier, K., Hanfland, M., Wessel, M., Dronskowski, R., Dzivenko, D.A., Riedel, R., and Schwarz, U. (2009) High-pressure, high-temperature single crystal growth, ab initio electronic structure calculation and equation of state of ε-Fe3N1+x. Chemistry of Materials, 21(2), 392–398, 10.1021/cm802721k.Search in Google Scholar

Nordenskiöld, A.E. (1870) Redogörelse for en expedition till Grönland or 1870. Öfversigt af Svenska Vetenskaps-Akademiens Förhandlinger, Stockholm, 27, 1057–1070.Search in Google Scholar

Nordenskiöld, A.E. (1871) Redogörelse for en ekspedition till Grönland 1870. Öfversigt af Svenska Vetenskaps-Akademiens Förhandlinger, Stockholm 28, 973–1082.Search in Google Scholar

Oreshin, S.I., and Vinnik, L.P. (2004) Heterogeneity and anisotropy of seismic attenuation in the inner core. Geophysical Research Letters, 31, L02613.10.1029/2003GL018591Search in Google Scholar

Palme, H., and O’Neill, H.St.C. (2004) Cosmochemical estimates of Mantle Composition. In Holland, H.D., and Turekian, K.K., Eds., Treatise on Geochemistry, 2, 1–38. Elsevier.10.1016/B0-08-043751-6/02177-0Search in Google Scholar

Petford, N., Rushmer, T., and Yuen, D. A. (2007) Deformation-induced mechanical instabilities at the core-mantle boundary. Post-Perovskite, The Last Mantle Phase Transition, 271–287 (AGU 2007).10.1029/174GM18Search in Google Scholar

Prescher, C., Dubrovinsky, L., Bykova, E., Kupenko, I., Glazyrin, K., Kantor, A., McCammon, C., Mookherjee, M., Nakajima, Y., Miyajima, N., and others. (2015) High Poisson’s ratio of Earth’s inner core explained by carbon alloying. Nature Geoscience, 8, 220–223.10.1038/ngeo2370Search in Google Scholar

Rechenbach, D., and Jacobs, H. (1996) Structure determination of ζ-Fe2N by neutron and synchrotron powder diffraction. Journal of Alloys and Compounds, 235, 15–22.10.1016/0925-8388(95)02097-7Search in Google Scholar

Roskosz, M., Bouhifd, M.A., Jephcoat, A.P., Marty, B., and Mysen, B.O. (2013) Nitrogen solubility in molten metal and silicate at high pressure and temperature. Geochimica et Cosmochimica Acta, 121, 15–28.10.1016/j.gca.2013.07.007Search in Google Scholar

Rudloff-Grund, J., Brenker, F., Marquardt, K., Howell, D., Schreiber, A., O’Reilly, S. Y., Griffin, W.L., and Kaminsky, F.V. (2016) Nitrogen-nanoinclusions in milky diamonds from Juina area, Mato Grosso State, Brazil. Lithos 265, 57–67, 10.1016/j.lithos.2016.09.022.Search in Google Scholar

Rushmer, T., Minarik, W.G., and Taylor, G.J. (2000) Physical processes of core formation. Origin of the Earth and Moon, 227–245.10.2307/j.ctv1v7zdrp.19Search in Google Scholar

Scott, E.R.D. (1971) New carbide (Fe, Ni)23C6, found in meteorites. Nature Physical Sciences, 229, 61–62.10.1038/physci229061a0Search in Google Scholar

Shepard, C.U. (1867) New classification of meteorites with an enumeration of meteoric species. American Journal of Science and Arts, Second Series, 43, 22–28.10.2475/ajs.s2-43.127.22Search in Google Scholar

Shi, N., Bai, W., Li, G., Xiong, M., Fang, Q., Yang, J., Ma, Z., and Rong, H. (2009) Yarlongite: A new metallic carbide mineral. Acta Geologica Sinica, 83, 52–56.10.1111/j.1755-6724.2009.00007.xSearch in Google Scholar

Steenstrup, K.J.V. (1875) Om de Nordenskiöldske jernmasser og om forekomsten af gediegent jern i basalt. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening, Copenhagen 7, 284–306.Search in Google Scholar

Stixrude, L., and Cohen, R.E. (1995) High-pressure elasticity of iron and anisotropy of Earth’s inner core. Science, 267, 1972–1975.10.1126/science.267.5206.1972Search in Google Scholar PubMed

Stixrude, L., Wasserman, E., and Cohen, R.E. (1997) Composition and temperature of Earth’s inner core. Journal of Geophysical Research, 102(B11), 24,729–24,739.10.1029/97JB02125Search in Google Scholar

Strunz, H. (1978) Mineralogische Tabellen. 7, unferänderte Auflage, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 621 SS.Search in Google Scholar

Sugiura, N. (1998) Ion probe measurements of carbon and nitrogen in iron meteorites. Meteoritica and Planetary Sciience, 33, 393–409.10.1111/j.1945-5100.1998.tb01645.xSearch in Google Scholar

Tucker, J.M., and Mukhopadhyay, S. (2014) Evidence for multiple magma ocean outgassing and atmospheric loss episodes from mantle noble gases. Earth and Planetary Science Letters, 393, 254–265, 10.1016/j.epsl.2014.02.050.Search in Google Scholar

Ulff-M⊘ller, F. (1985) Solidification history of the Kitdlit lens: Immiscible metal and sulphide liquids from a basaltic dyke on Disko, Central West Greenland. Journal of Petrology, 26, 64–91.10.1093/petrology/26.1.64Search in Google Scholar

Vocadlo, L. (2009) Mineralogy of the Earth—The Earth’s core: Iron and iron alloys. In G.D. Price, Ed., Treatise on Geophysics. Mineral Physics, p. 91–120. Elsevier.10.1016/B978-044452748-6.00032-8Search in Google Scholar

Weinschenk, E. (1889) Über einige Bestandtheile des Meteoreisens von Magura, Arva, Ungarn. Annalen des Naturhistorischen Hofmuseums, Wien 4, 93–101.Search in Google Scholar

Wirth, R. (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. European Journal of Mineralogy, 16, 863–876.10.1127/0935-1221/2004/0016-0863Search in Google Scholar

Wirth, R. (2009) Focused Ion Beam (FIB) combined with SEM and TEM: Advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chemical Geology, 261, 217–229.10.1016/j.chemgeo.2008.05.019Search in Google Scholar

Wirth, R., Kaminsky, F., Matsyuk, S., and Schreiber, A. (2009) Unusual micro- and nano-inclusions in diamonds from the Juina Area, Brazil. Earth and Planetary Science Letters, 286(1-2), 292–303, 10.1016/j.epsl.2009.06.043.Search in Google Scholar

Yoder, C.F. (1995) Astrometric and geodetic properties of the Earth and the solar system. In T.J. Ahrens, Ed., Global Earth Physics: A Handbook of Physical Constants, Vol. AGU Reference Shelf, p. 1–31. American Geophysical Union, Washington, D.C.10.1029/RF001p0001Search in Google Scholar

Zhang, Y., and Yin, Q.-Z. (2012) Carbon and other light element contents in the Earth’s core based on first-principles molecular dynamics. Proceedings of the National Academy of Sciences, 109(48), 19,579–19,583.10.1073/pnas.1203826109Search in Google Scholar PubMed PubMed Central

Received: 2017-2-4
Accepted: 2017-4-28
Published Online: 2017-7-31
Published in Print: 2017-8-28

© 2017 by Walter de Gruyter Berlin/Boston

Articles in the same Issue

  1. How many boron minerals occur in Earth’s upper crust?
  2. Outlooks in Earth and Planetary Materials
  3. Network analysis of mineralogical systems
  4. Special collection: From magmas to ore deposits
  5. Geochemistry of the Cretaceous Kaskanak Batholith and genesis of the Pebble porphyry Cu-Au-Mo deposit, Southwest Alaska
  6. Special collection: From magmas to ore deposits
  7. Physicochemical controls on bismuth mineralization: An example from Moutoulas, Serifos Island, Cyclades, Greece
  8. Special collection: Earth analogs for martian geological materials and processes
  9. Geochemistry and mineralogy of a saprolite developed on Columbia River Basalt: Secondary clay formation, element leaching, and mass balance during weathering
  10. Special collection: Apatite: A common mineral, uncommonly versatile
  11. An ab-initio study of the energetics and geometry of sulfide, sulfite, and sulfate incorporation into apatite: The thermodynamic basis for using this system as an oxybarometer
  12. Special collection: Dynamics of magmatic processes
  13. The role of modifier cations in network cation coordination increases with pressure in aluminosilicate glasses and melts from 1 to 3 GPa
  14. Nitrides and carbonitrides from the lowermost mantle and their importance in the search for Earth’s “lost” nitrogen
  15. Accounting for the species-dependence of the 3500 cm−1 H2Ot infrared molar absorptivity coefficient: Implications for hydrated volcanic glasses
  16. A finite strain approach to thermal expansivity’s pressure dependence
  17. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results
  18. Single-crystal equations of state of magnesiowüstite at high pressures
  19. Analysis of erionites from volcaniclastic sedimentary rocks and possible implications for toxicological research
  20. Reconstructive phase transitions induced by temperature in gmelinite-Na zeolite
  21. Smoking gun for thallium geochemistry in volcanic arcs: Nataliyamalikite, TlI, a new thallium mineral from an active fumarole at Avacha Volcano, Kamchatka Peninsula, Russia
  22. How to facet gem-quality chrysoberyl: Clues from the relationship between color and pleochroism, with spectroscopic analysis and colorimetric parameters
  23. Letter
  24. Mn-Fe systematics in major planetary body reservoirs in the solar system and the positioning of the Angrite Parent Body: A crystal-chemical perspective
  25. Letter
  26. Dolomite-IV: Candidate structure for a carbonate in the Earth’s lower mantle
  27. Book Review
  28. Book Review
Downloaded on 14.12.2025 from https://www.degruyterbrill.com/document/doi/10.2138/am-2017-6101/html
Scroll to top button