Startseite Naturwissenschaften Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?

  • Nathalie Pytlik , Daniel Butscher , Susanne Machill und Eike Brunner EMAIL logo
Veröffentlicht/Copyright: 21. März 2018

Abstract

Biosynthesis by diatoms provides a green approach for nanoparticle (NP) production. However, reproducible and homogeneous shapes are essential for their application. To improve these characteristics during biosynthesis, the underlying synthesis mechanisms as well as involved substances need to be understood. The first essential step for suitable analyses is the purification of Au-silica-nanocomposites from organic biomass. Succesfully cleaned nanocomposites could, for example, be useful as catalysts. In combination with the biosynthesized NPs, this material presents a “green” catalyst and could contribute to the currently thriving green nanochemistry. In this work, we compare different purification agents with respect to their ability to purify cells of the diatom Stephanopyxis turris without separating the biosynthesized Au-silica-nanocomposites from the diatom cell walls. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) are used to localize and identify Au-silica-nanocomposites around the cells. The amount of remaining organic compounds on the purified cell is detected by attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy. Furthermore, inductively coupled plasma optical emission spectrometry (ICP-OES) is used to track the “gold path” during cell growth and the different purifications steps.

Acknowledgement

The authors wish to thank A. Brünner and M. Lê Anh (Inorganic Chemistry, TU Dresden) for SEM and EDX and R. Schulze (Bioanalytical Chemistry, TU Dresden) for ICP-OES measurements and continuative discussion of the results. Furthermore, thanks are due to B. Klemmed (Physical Chemistry, TU Dresden) for TEM measurements. Financial support from the Deutsche Forschungsgemeinschaft (grants no. BR1278/22-1 and BR1278/25-3) is gratefully acknowledged.

References

1. E. V. Armbrust, J. A. Berges, C. Bowler, B. R. Green, D. Martinez, N. H. Putnam, S. Zhou, A. E. Allen, K. E. Apt, M. Bechner, M. A. Brzezinski, B. K. Chaal, A. Chiovitti, A. K. Davis, M. S. Demarest, J. C. Detter, T. Glavina, D. Goodstein, M. Z. Hadi, U. Hellsten, M. Hildebrand, B. D. Jenkins, W. W. Y. Lau, T. W. Lane, F. W. Larimer, C. J. Lippmeier, S. Lucas, A. Montsant, M. Obornik, M. S. Parker, B. Palenik, G. J. Pazour, P. M. Richardson, T. A. Rynearson, M. A. Saito, D. C. Schwartz, K. Thamatrakoln, K. Valentin, A. Vardi, F. P. Wilkerson, D. S. Rokhsar, Science 306 (2004) 79.10.1126/science.1101156Suche in Google Scholar PubMed

2. D. Werner, The Biology of Diatoms, University of California Press, Berkeley and Los Angeles (1997).Suche in Google Scholar

3. N. Kröger, N. Poulsen, Annu. Rev. Genet. 42 (2008) 83.10.1146/annurev.genet.41.110306.130109Suche in Google Scholar PubMed

4. J. Parkinson, R. Gordon, Nanotechnology 17 (1999) 190.10.1016/S0167-7799(99)01321-9Suche in Google Scholar PubMed

5. R. Ragni, S. R. Cicco, D. Vona, G. M. Farinola, Adv. Mater. 1704289 (2017) 1.Suche in Google Scholar

6. C. Jeffryes, S. N. Agathos, G. Rorrer, Curr. Opin. Biotechnol. 33 (2015) 23.10.1016/j.copbio.2014.10.005Suche in Google Scholar PubMed

7. C. Jeffryes, J. Campbell, H. Li, J. Jiao, G. Rorrer, Energy Environ. Sci. 4 (2011) 3930.10.1039/c0ee00306aSuche in Google Scholar

8. D. Losic, J. G. Mitchell, N. H. Voelcker, Adv. Mater. 21 (2009) 2947.10.1002/adma.200803778Suche in Google Scholar

9. N. Nassif, J. Livage, Chem. Soc. Rev. 40 (2011) 849.10.1039/C0CS00122HSuche in Google Scholar PubMed

10. D. Y. Zhang, Y. Wang, J. Cai, J. F. Pan, X. G. Jiang, Y. G. Jiang, Chinese Sci. Bull. 57 (2012) 3836.10.1007/s11434-012-5410-xSuche in Google Scholar

11. S. S. Dixit, J. P. Smol, Environ. Monit. Assess. 31 (1994) 275.10.1007/BF00577258Suche in Google Scholar PubMed

12. J. K. Wang, M. Seibert, Biotechnol. Biofuels 10 (2017) 1.10.1186/s13068-017-0699-ySuche in Google Scholar PubMed PubMed Central

13. M. Hildebrand, A. K. Davis, S. R. Smith, J. C. Traller, R. Abbriano, Biofuels 3 (2012) 221.10.4155/bfs.11.157Suche in Google Scholar

14. M. S. Aw, S. Simovic, J. Addai-Mensah, D. Losic, Nanomedicine 6 (2011) 1159.10.2217/nnm.11.29Suche in Google Scholar PubMed

15. C. Fischer, M. Adam, A. C. Mueller, E. Sperling, M. Wustmann, K.-H. Van Pée, S. Kaskel, E. Brunner, ACS Omega 1 (2016) 123.10.1021/acsomega.6b00406Suche in Google Scholar PubMed PubMed Central

16. B. C. Jeffryes, R. Solanki, Y. Rangineni, W. Wang, C. Chang, G. L. Rorrer, Adv. Mater. 20 (2008) 2633.10.1002/adma.200800292Suche in Google Scholar

17. F. Ren, J. Campbell, X. Wang, G. L. Rorrer, X. W. Alan, Opt. Express 21 (2013) 15308.10.1364/OE.21.015308Suche in Google Scholar PubMed

18. A. Eychmüller, J. Phys. Chem. B 104 (2000) 6514.10.1021/jp9943676Suche in Google Scholar

19. K. B. Narayanan, N. Sakthivel, Adv. Colloid Interface Sci. 169 (2011) 59.10.1016/j.cis.2011.08.004Suche in Google Scholar PubMed

20. L. Kühn, A. K. Herrmann, B. Rutkowski, M. Oezaslan, M. Nachtegaal, M. Klose, L. Giebeler, N. Gaponik, J. Eckert, T. J. Schmidt, A. Czyrska-Filemonowicz, A. Eychmüller, Chem. Eur. J. 22 (2016) 13446.10.1002/chem.201602487Suche in Google Scholar PubMed

21. W. J. Crookes-Goodson, J. M. Slocik, R. R. Naik, Chem. Soc. Rev. 37 (2008) 2403.10.1039/b702825nSuche in Google Scholar PubMed

22. H. Korbekandi, S. Iravani, S. Abbasi, Crit. Rev. Biotechnol. 29 (2009) 279.10.3109/07388550903062462Suche in Google Scholar PubMed

23. G. L. Rorrer, C.-H. Chang, S.-H. Liu, C. Jeffryes, J. Jiao, J. A. Hedberg, J. Nanosci. Nanotechnol. 5 (2005) 41.10.1166/jnn.2005.005Suche in Google Scholar PubMed

24. T. Qin, T. Gutu, J. Jiao, C. Chang, G. L. Rorrer, ACS Nano 2 (2008) 1296.10.1021/nn800114qSuche in Google Scholar PubMed

25. C. Jeffryes, T. Gutu, J. Jiao, G. L. Rorrer, ACS Nano 2 (2008) 2103.10.1021/nn800470xSuche in Google Scholar PubMed

26. C. Jeffryes, T. Gutu, J. Jiao, G. L. Rorrer, Mater. Sci. Eng. C 28 (2008) 107.10.1016/j.msec.2007.01.002Suche in Google Scholar

27. T. Yamazaki, H. Sasanuma, S. Mayama, K. Umemura, Phys. Status Solidi C 7 (2010) 2759.10.1002/pssc.200983808Suche in Google Scholar

28. J. Toster, K. S. Iyer, R. Burtovyy, S. S. O. Burgess, I. A. Luzinov, C. L. Raston, J. Am. Chem. Soc. 131 (2009) 8356.10.1021/ja901806ySuche in Google Scholar PubMed

29. A. Schröfel, G. Kratošová, M. Krautová, E. Dobročka, I. Vávra, J. Nanoparticle Res. 13 (2011) 3207.10.1007/s11051-011-0221-6Suche in Google Scholar

30. A. Feurtet-Mazel, S. Mornet, L. Charron, N. Mesmer-Dudons, R. Maury-Brachet, M. Baudrimont, Environ. Sci. Pollut. Res. 23 (2016) 4334.10.1007/s11356-015-4139-xSuche in Google Scholar PubMed

31. N. Pytlik, J. Kaden, M. Finger, J. Naumann, S. Wanke, S. Machill, E. Brunner, Algal Res. 28 (2017) 9.10.1016/j.algal.2017.10.004Suche in Google Scholar

32. J. Jena, N. Pradhan, B. P. Dash, P. K. Panda, B. K. Mishra, J. Saudi Chem. Soc. 19 (2015) 661.10.1016/j.jscs.2014.06.005Suche in Google Scholar

33. P. Roychoudhury, C. Nandi, R. Pal, J. Appl. Phycol. 28 (2016) 2857.10.1007/s10811-016-0809-4Suche in Google Scholar

34. A. Dubavik, V. Lesnyak, N. Gaponik, A. Eychmüller, Langmuir 27 (2011) 10224.10.1021/la201638tSuche in Google Scholar PubMed

35. A. A. Shemetov, I. Nabiev, A. Sukhanova, ACS Nano 6 (2012) 4585.10.1021/nn300415xSuche in Google Scholar PubMed

36. P. Harrison, R. E. Waters, F. J. R. Taylor, J. Phycol. 16 (1980) 28.10.1111/j.1529-8817.1980.tb00724.xSuche in Google Scholar

37. N. Kröger, C. Bergsdorf, M. Sumper, EMBO J. 13 (1994) 4676.10.1002/j.1460-2075.1994.tb06791.xSuche in Google Scholar PubMed PubMed Central

38. E. Van Eynde, B. Lenaerts, T. Tytgat, S. W. Verbruggen, B. Hauchecorne, R. Blust, S. Lenaerts, RSC Adv. 4 (2014) 56200.10.1039/C4RA09305DSuche in Google Scholar

39. N. Chamuah, L. Chetia, N. Zahan, S. Dutta, G. A. Ahmed, P. Nath, J. Phys. D Appl. Phys. 50 (2017) 175103.10.1088/1361-6463/aa63b0Suche in Google Scholar

40. J. Chen, G. Qin, Q. Chen, J. Yu, S. Li, F. Cao, B. Yang, Y. Ren, J. Mater. Chem. C 3 (2015) 4933.10.1039/C5TC00717HSuche in Google Scholar

41. J. Toster, C. Harnagea, K. S. Iyer, C. L. Raston, Cryst. Eng. Comm. 14 (2012) 3446.10.1039/c2ce06648cSuche in Google Scholar

42. S. Hauptkorn, J. Pavel, H. Seltner, J. Anal. Chem. 370 (2001) 246.10.1007/s002160100759Suche in Google Scholar PubMed

43. M. P. Andrews, A. Hajiaboli, J. Hiltz, T. Gonzalez, G. Singh, R. B. Lennox, Proc. SPIE 7946 (2011) 79461S.10.1117/12.881467Suche in Google Scholar

44. Y. Li, Y. H. Gao, X. S. Li, J. Y. Yang, G. H. Que, Colloids Surf. B Biointerfaces 75 (2010) 550.10.1016/j.colsurfb.2009.09.026Suche in Google Scholar PubMed

45. E. K. Payne, N. L. Rosi, C. Xue, C. A. Mirkin, Angew. Chemie – Int. Ed. 44 (2005) 5064.10.1002/anie.200500988Suche in Google Scholar PubMed

46. N. Kröger, R. Deutzmann, M. Sumper, Science 286 (1999) 1129.10.1126/science.286.5442.1129Suche in Google Scholar PubMed

47. J. R. Martinez, F. Ruiz, Y. V. Vorobiev, F. Perez-Robles, J. Gonzalez-Hernandez, J. Chem. Phys. 109 (1998) 7511.Suche in Google Scholar

48. M. Giordano, M. Kansiz, P. Heraud, J. Beardall, B. Wood, D. McNaughton, J. Phycol. 37 (2001) 271.10.1046/j.1529-8817.2001.037002271.xSuche in Google Scholar

49. P. Innocenzi, J. Non. Cryst. Solids 316 (2003) 309.10.1016/S0022-3093(02)01637-XSuche in Google Scholar

50. A. Barth, Biochim. Biophys. Acta – Bioenerg. 1767 (2007) 1073.10.1016/j.bbabio.2007.06.004Suche in Google Scholar PubMed

51. K. Stehfest, J. Toepel, C. Wilhelm, Plant Physiol. Biochem. 43 (2005) 717.10.1016/j.plaphy.2005.07.001Suche in Google Scholar PubMed

52. V. Martin-Jézéquel, M. Hildebrand, M. A. Brzezinski, J. Phycol. 36 (2000) 821.10.1046/j.1529-8817.2000.00019.xSuche in Google Scholar

53. J. C. Lewin, Geochim. Cosmochim. Acta 21 (1961) 182.10.1016/S0016-7037(61)80054-9Suche in Google Scholar


Supplementary Material:

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-1141).


Received: 2018-02-05
Accepted: 2018-02-23
Published Online: 2018-03-21
Published in Print: 2018-08-28

©2018 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Alexander Eychmüller
  4. Halogens in the Synthesis of Colloidal Semiconductor Nanocrystals
  5. Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers
  6. Fabrication of Ag2S/CdS Heterostructured Nanosheets via Self-Limited Cation Exchange
  7. Ion-Selective Ligands: How Colloidal Nano- and Micro-Particles Can Introduce New Functionalities
  8. TEM, FTIR and Electrochemistry Study: Desorption of PVP from Pt Nanocubes
  9. Incorporation of CdTe Nanocrystals into Metal Oxide Matrices Towards Inorganic Nanocomposite Materials
  10. Diatoms – A “Green” Way to Biosynthesize Gold-Silica Nanocomposites?
  11. Evidence for Photo-Switchable Carrier Mobilities in Blends of PbS Nanocrystals and Photochromic Dithienylcyclopentene Derivatives
  12. Gelation-Assisted Layer-by-Layer Deposition of High Performance Nanocomposites
  13. Enhancement of the Fluorescence Quantum Yield of Thiol-Stabilized CdTe Quantum Dots Through Surface Passivation with Sodium Chloride and Bicarbonate
  14. Fluorescence Quenching of CdTe Quantum Dots with Co (III) Complexes via Electrostatic Assembly Formation
  15. Colloidal Photoluminescent Refractive Index Nanosensor Using Plasmonic Effects
  16. Towards Low-Toxic Colloidal Quantum Dots
  17. Color-Enrichment Semiconductor Nanocrystals for Biorhythm-Friendly Backlighting
  18. Transient Absorption Studies on Nanostructured Materials and Composites: Towards the Development of New Photocatalytic Systems
  19. Transient Spectroscopy of Glass-Embedded Perovskite Quantum Dots: Novel Structures in an Old Wrapping
  20. Energy Transfer Between Single Semiconductor Quantum Dots and Organic Dye Molecules
  21. Chemical Routes to Surface Enhanced Infrared Absorption (SEIRA) Substrates
  22. Plasmonic Cu/CuCl/Cu2S/Ag and Cu/CuCl/Cu2S/Au Supports with Peroxidase-Like Activity: Insights from Surface Enhanced Raman Spectroscopy
  23. n-Type Cu2O/α-Fe2O3 Heterojunctions by Electrochemical Deposition: Tuning of Cu2O Thickness for Maximum Photoelectrochemical Performance
  24. The Photoelectrochemistry of Assemblies of Semiconductor Nanoparticles at Interfaces
  25. Surface-Charge Dependent Orientation of Water at the Interface of a Gold Electrode: A Cluster Study
  26. Single Particle Spectroscopy of Radiative Processes in Colloid-to-Film-Coupled Nanoantennas
  27. Coupled Plasmon Resonances and Gap Modes in Laterally Assembled Gold Nanorod Arrays
  28. Anisotropy of Structure and Optical Properties of Self-Assembled and Oriented Colloidal CdSe Nanoplatelets
  29. Simple Electroless Synthesis of Cobalt Nanoparticle Chains, Oriented by Externally Applied Magnetic Fields
  30. Functionalization of Graphene Aerogels and their Applications in Energy Storage and Conversion
  31. Macroscopic Aerogels with Retained Nanoscopic Plasmonic Properties
  32. Application of Aqueous-Based Covalent Crosslinking Strategies to the Formation of Metal Chalcogenide Gels and Aerogels
  33. Cellulose-Based Hydrogels with Controllable Electrical and Mechanical Properties
  34. Naphthalenetetracarboxylic Diimide Derivatives: Molecular Structure, Thin Film Properties and Solar Cell Applications
  35. Metal-Phenolic Encapsulated Mesoporous Silica Nanoparticles for pH-Responsive Drug Delivery and Magnetic Resonance Imaging
  36. Extraction of K2CO3 from Low Concentration [K+] Solutions with the Aid of CO2: A Study on the Metastable Phase Equilibrium of K2CO3-Na2CO3-H2O Ternary System
Heruntergeladen am 28.1.2026 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1141/html
Button zum nach oben scrollen